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ABSTRACT OF THE DISSERTATION

Estimation and Inference of Directionally Differentiable Functions: Theory

and Applications

by

Zheng Fang

Doctor of Philosophy in Economics

University of California, San Diego, 2015

Professor Andres Santos, Chair

This dissertation addresses a large class of irregular models in economics and statis-

tics – settings in which the parameters of interest take the form φ(θ0), where φ is a known di-

rectionally differentiable function and θ0 is estimated by θ̂n. Chapter 1 provides a tractable

framework for conducting inference, Chapter 2 focuses on optimality of estimation, and

Chapter 3 applies the developed theory to construct a test whether a Hilbert space val-

ued parameter belongs to a convex set and to derive the uniform weak convergence of the

Grenander distribution function – i.e. the least concave majorant of the empirical distribu-

tion function – under minimal assumptions.

xiii
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Chapter 1

Inference on Directionally

Differentiable Functions

Abstract

This chapter studies an asymptotic framework for conducting inference on param-

eters of the form φ(θ0), where φ is a known directionally differentiable function and θ0 is

estimated by θ̂n. In these settings, the asymptotic distribution of the plug-in estimator

φ(θ̂n) can be readily derived employing existing extensions to the Delta method. We show,

however, that the “standard” bootstrap is only consistent under overly stringent conditions

– in particular we establish that differentiability of φ is a necessary and sufficient condition

for bootstrap consistency whenever the limiting distribution of θ̂n is Gaussian. An alterna-

tive resampling scheme is proposed which remains consistent when the bootstrap fails, and

is shown to provide local size control under restrictions on the directional derivative of φ.

1
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2

1.1 Introduction

The Delta method is a cornerstone of asymptotic analysis, allowing researchers to

easily derive asymptotic distributions, compute standard errors, and establish bootstrap

consistency.1 However, an important class of estimation and inference problems in eco-

nomics fall outside its scope. These problems study parameters of the form φ(θ0), where

θ0 is unknown but estimable and φ is a known but potentially non-differentiable function.

Such a setting arises frequently in economics, with applications including the construction

of parameter confidence regions in moment inequality models (Pakes et al., 2015), the study

of convex partially identified sets (Beresteanu and Molinari, 2008; Bontemps et al., 2012),

and the development of tests of superior predictive ability (White, 2000; Hansen, 2005),

of stochastic dominance (Linton et al., 2010), and of likelihood ratio ordering (Beare and

Moon, 2015).

The aforementioned examples share the common feature of φ being directionally

differentiable despite full differentiability failing to hold. In this paper, we show that φ be-

ing directionally differentiable provides enough structure for the development of a unifying

asymptotic framework for conducting inference in these problems – much in the same man-

ner the Delta method and its bootstrap counterpart yield a common scheme for analyzing

applications in which φ is differentiable. Specifically, we let θ0 be a Banach space valued

parameter and require the existence of an estimator θ̂n whose asymptotic distribution we

denote by G0 – i.e., for some sequence rn ↑ ∞, we have that

rn{θ̂n − θ0}
L→ G0 . (1.1)

Within this framework, we then study the problem of conducting inference on φ(θ0) by

employing the estimator φ(θ̂n) – a practice common in, for example, moment inequality

(Andrews and Soares, 2010), conditional moment inequality (Andrews and Shi, 2013), and

1Interestingly, despite its importance, the origins of the Delta method remain obscure. Ver Hoef (2012)
recently attributed its invention to the economist Robert Dorfman in his article Dorfman (1938), which was
curiously published by the Worcester State Hospital (a public asylum for the insane).
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incomplete linear models (Beresteanu and Molinari, 2008).

As has been previously noted in the literature, the traditional Delta method readily

generalizes to the case where φ is directionally differentiable (Shapiro, 1991; Dümbgen,

1993). In particular, if φ is Hadamard directionally differentiable, then

rn{φ(θ̂n)− φ(θ0)} L→ φ′θ0(G0) , (1.2)

where φ′θ0 denotes the directional derivative of φ at θ0. The utility of the asymptotic

distribution of φ(θ̂n), however, hinges on our ability to consistently estimate it. While

it is tempting in these problems to resort to resampling schemes such as the bootstrap

of Efron (1979), we know by way of example that they may be inconsistent even if they

are valid for the original estimator θ̂n (Bickel et al., 1997; Andrews, 2000). We generalize

these examples by providing simple to verify necessary and sufficient conditions for the

validity of the bootstrap for θ̂n to be inherited by φ(θ̂n). In the ubiquitous case where G0

is Gaussian, our results imply that full differentiability of φ at θ0 is in fact a necessary

and sufficient condition for bootstrap consistency. Thus, we conclude that the failure of

“standard” bootstrap approaches is an inherent property of irregular models. Indeed, an

immediate corollary of our analysis is that, in this setting, the bootstrap is inconsistent

whenever the asymptotic distribution of φ(θ̂n) is not Gaussian.

Intuitively, consistently estimating the asymptotic distribution of φ(θ̂n) requires us

to adequately approximate both the law of G0 and the directional derivative φ′θ0 (see (1.2)).

While a consistent bootstrap procedure for θ̂n enables us to do the former, the bootstrap fails

for φ(θ̂n) due to its inability to properly estimate φ′θ0 . These heuristics, however, readily

suggests a remedy to the problem – namely to compose a suitable estimator φ̂′n for φ′θ0

with the bootstrap approximation to the asymptotic distribution of θ̂n. We formalize this

intuition, and provide conditions on φ̂′n that ensure the proposed approach yields consistent

estimators of the asymptotic distribution of φ(θ̂n) and its quantiles. Moreover, we further

show that existing inferential procedures developed in the context of specific applications in

fact follow precisely this approach – these include Andrews and Soares (2010) for moment



www.manaraa.com

4

inequalities, Linton et al. (2010) for tests of stochastic dominance, and Kaido (2013b) for

convex partially identified models.

As argued by Imbens and Manski (2004), pointwise asymptotic approximations

may be unreliable, in particular when φ(θ̂n) is not regular. Heuristically, if the asymptotic

distribution of φ(θ̂n) is sensitive to local perturbations of the data generating process, then

employing (1.2) as the basis for inference may yield poor size in finite samples. We thus

examine the ability of our proposed procedure to provide local size control in the context

of employing φ(θ̂n) as a test statistic for the hypothesis

H0 : φ(θ0) ≤ 0 H1 : φ(θ0) > 0 . (1.3)

Special cases of (1.3) include inference in moment inequality models and tests of stochastic

dominance – instances in which our framework encompasses procedures that provide local,

in fact uniform, size control (Andrews and Soares, 2010; Linton et al., 2010; Andrews and

Shi, 2013). We show that the common structure linking these applications is that φ′θ0 and

θ̂n are respectively subadditive and regular. Indeed, we more generally establish that these

two properties suffice for guaranteeing the ability of our procedure to locally control size

along parametric submodels. As part of this local analysis, we further characterize local

power and show that, under mild regularity conditions, the bootstrap is valid for φ(θ̂n) if

and only if φ(θ̂n) is regular.

We illustrate the utility of our analysis by developing a test of whether a Hilbert

space valued parameter θ0 belongs to a known convex set Λ – a setting that includes

tests of moment inequalities, stochastic dominance, and shape restrictions as special cases.

Specifically, we set φ(θ) to be the distance between θ and the set Λ, and employ φ(θ̂n)

as a test statistic of whether θ0 belongs to Λ. Exploiting the directional differentiability

of projections onto convex sets (Zarantonello, 1971), we show the asymptotic distribution

of φ(θ̂n) is given by the distance between G0 and the tangent cone of Λ at θ0. While

our results imply the bootstrap is inconsistent, we are nonetheless able to obtain valid

critical values by constructing a suitable estimator φ̂′n which we compose with a bootstrap
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approximation to the law of G0. In addition, we establish the directional derivative φ′θ0

is always subadditive, and thus conclude that the proposed test is able to locally control

size provided θ̂n is regular. A brief simulation study confirms our theoretical findings by

showing the proposed test possesses good finite sample size control.

In related work, an extensive literature has established the consistency of the boot-

strap and its ability to provide a refinement when θ0 is a vector of means and φ is a

differentiable function (Hall, 1992; Horowitz, 2001). The setting where φ is directionally

differentiable was originally examined by Dümbgen (1993), who studied the unconditional

distribution of the bootstrap and in this way obtained sufficient, but not necessary, con-

ditions for the bootstrap to fail for φ(θ̂n). In more recent work, applications where φ is

not fully differentiable have garnered increasing attention due to their preponderance in the

analysis of partially identified models (Manski, 2003). Hirano and Porter (2012) and Song

(2014), for example, explicitly exploit the directional differentiability of φ as well, though

their focus is on estimation rather than inference. Other work studying these irregular

models, though not explicitly relying on the directional differentiability of φ, include Cher-

nozhukov et al. (2007, 2013), Romano and Shaikh (2008, 2010), Bugni (2010), and Canay

(2010) among many others.

The remainder of the paper is organized as follows. Section 1.2 formally introduces

the model we study and contains a minor extension of the Delta method for directionally

differentiable functions. In Section 1.3 we characterize necessary and sufficient conditions

for bootstrap consistency, develop an alternative method for estimating the asymptotic

distribution of φ(θ̂n), and study the local properties of this approach. Section 1.4 concludes.

All proofs are contained in the Appendix.

1.2 Setup and Background

In this section, we introduce our notation and review the concepts of Hadamard and

directional Hadamard differentiability as well as their implications for the Delta method.
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1.2.1 General Setup

In order to accommodate applications such as conditional moment inequalities and

tests of shape restrictions, we must allow for both the parameter θ0 and the map φ to take

values in possibly infinite dimensional spaces; see Examples 1.2.3-1.2.6 below. We therefore

impose the general requirement that θ0 ∈ Dφ and φ : Dφ ⊆ D → E for D and E Banach

spaces with norms ‖ · ‖D and ‖ · ‖E respectively, and Dφ the domain of φ.

The estimator θ̂n is assumed to be a function of a sequence of random variables

{Xi}ni=1 into the domain of φ. The distributional convergence

rn{θ̂n − θ0}
L→ G0 , (1.4)

is then understood to be in D and with respect to the joint law of {Xi}ni=1. For instance, if

{Xi}ni=1 is an i.i.d. sample and each Xi ∈ Rd is distributed according to P , then probability

statements for θ̂n : {Xi}ni=1 → Dφ are understood to be with respect to the product measure⊗n
i=1 P . We emphasize, however, that with the exception of the local analysis where we

assume {Xi}ni=1 is i.i.d. for simplicity, our results are applicable to dependent settings as

well. In addition, we also note the convergence in distribution in (1.4) is meant in the

Hoffman-Jørgensen sense (van der Vaart and Wellner, 1996). Expectations throughout the

text should therefore be interpreted as outer expectations, though we obviate the distinction

in the notation. The notation is made explicit in the Appendix whenever differentiating

between inner and outer expectations is necessary.

1.2.1.1 Examples

In order to fix ideas, we next introduce a series of examples that illustrate the broad

applicability of our setting. We return to these examples throughout the paper, and develop

a formal treatment of each of them in the Appendix. For ease of exposition, we base our

discussion on simplifications of well known models, though we note that our results apply

to the more general problems that motivated them.

Our first example is due to Bickel et al. (1997), and provides an early illustration of
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the potential failure of the nonparametric bootstrap.

Example 1.2.1 (Absolute Value of Mean). Let X ∈ R be a scalar valued random variable,

and suppose we wish to estimate the parameter

φ(θ0) = |E[X]| . (1.5)

Here, θ0 = E[X], D = E = R, and φ : R→ R satisfies φ(θ) = |θ| for all θ ∈ R.

Our next example is a special case of the intersection bounds model studied in

Hirano and Porter (2012), and Chernozhukov et al. (2013) among many others.

Example 1.2.2 (Intersection Bounds). Let X = (X(1), X(2))′ ∈ R2 be a bivariate random

variable, and consider the problem of estimating the parameter

φ(θ0) = max{E[X(1)], E[X(2)]} . (1.6)

In this context, θ0 = (E[X(1)], E[X(2)])′, D = R2, E = R, and φ : R2 → R is given by

φ(θ) = max{θ(1), θ(2)} for any (θ(1), θ(2))′ = θ ∈ R2. Functionals such as (1.6) are also

often employed for inference in moment inequality models; see Chernozhukov et al. (2007),

Romano and Shaikh (2008), and Andrews and Soares (2010).

A related example arises in conditional moment inequality models, as studied in

Andrews and Shi (2013), Armstrong and Chan (2014), and Chetverikov (2012).

Example 1.2.3 (Conditional Moment Inequalities). Let X = (Y,Z ′)′ with Y ∈ R and

Z ∈ Rdz . For a suitable set of functions F ⊂ `∞(Rdz), Andrews and Shi (2013) propose

testing whether E[Y |Z] ≤ 0 almost surely, by estimating the parameter

φ(θ0) = sup
f∈F

E[Y f(Z)] . (1.7)

Here, θ0 ∈ `∞(F) satisfies θ0(f) = E[Y f(Z)] for all f ∈ F , D = `∞(F), E = R, and the

map φ : D→ E is given by φ(θ) = supf∈F θ(f).
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The following example is an abstract version of an approach pursued in Beresteanu

and Molinari (2008) and Bontemps et al. (2012) for studying partially identified models.

Example 1.2.4 (Convex Identified Sets). Let Λ ⊆ Rd denote a convex and compact set,

Sd be the unit sphere on Rd and C(Sd) denote the space of continuous functions on Sd. For

each p ∈ Sd, the support function ν(·,Λ) ∈ C(Sd) of the set Λ is then

ν(p,Λ) ≡ sup
λ∈Λ
〈p, λ〉 p ∈ Sd . (1.8)

As noted by Beresteanu and Molinari (2008) and Bontemps et al. (2012), the functional

φ(θ0) = sup
p∈Sd
{〈p, λ〉 − ν(p,Λ)} , (1.9)

can form the basis for a test of whether λ is an element of Λ, since λ ∈ Λ if and only

if φ(θ0) ≤ 0. In the context of this example, θ0 = ν(·,Λ), D = C(Sd), E = R, and

φ(θ) = supp∈Sd{〈p, λ〉 − θ(p)} for any θ ∈ C(Sd).

Our next example is based on the Linton et al. (2010) test for stochastic dominance.

Example 1.2.5 (Stochastic Dominance). Let X = (X(1), X(2))′ ∈ R2 be continuously

distributed, and define the marginal cdfs F (j)(u) ≡ P (X(j) ≤ u) for j ∈ {1, 2}. For a

positive integrable weighting function w : R→ R+, Linton et al. (2010) estimate

φ(θ0) =

∫
R

max{F (1)(u)− F (2)(u), 0}w(u)du , (1.10)

to construct a test of whetherX(1) first order stochastically dominatesX(2). In this example,

we set θ0 = (F (1), F (2)), D = `∞(R)× `∞(R), E = R and φ((θ(1), θ(2))) =
∫

max{θ(1)(u)−

θ(2)(u), 0}w(u)du for any (θ(1), θ(2)) ∈ `∞(R)× `∞(R).

In addition to tests of stochastic dominance, a more recent literature has aimed to

examine whether likelihood ratios are monotonic. Our final example is a simplification of a

test proposed in Carolan and Tebbs (2005) and Beare and Moon (2015).
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Example 1.2.6 (Likelihood Ratio Ordering). Let X = (X(1), X(2))′ ∈ R2 have strictly

increasing marginal cdfs Fj(u) ≡ P (X(j) ≤ u), and define G ≡ F1 ◦ F−1
2 . Further let

M : `∞([0, 1])→ `∞([0, 1]) be the least concave majorant operator, given by

Mf(u) = inf{g(u) : g ∈ `∞([0, 1]) is concave and f(u) ≤ g(u) for all u ∈ [0, 1]} (1.11)

for every f ∈ `∞([0, 1]). Since the likelihood ratio dF1/dF2 is nonincreasing if and only if

G is concave on [0, 1] (Carolan and Tebbs, 2005), Beare and Moon (2015) note

φ(θ0) =
{∫ 1

0
(MG(u)−G(u))2du

} 1
2

(1.12)

characterizes whether dF1/dF2 is nonincreasing, since φ(θ0) = 0 if and only if G is concave.

In this example, θ0 = G, D = `∞([0, 1]), E = R and φ : D→ E satisfies φ(θ) = {
∫ 1

0 (Mθ(u)−

θ(u))2du}
1
2 for any θ ∈ `∞([0, 1]).

1.2.2 Differentiability Concepts

In all the previous examples, there exist points θ ∈ D at which the map φ : D→ E

is not differentiable. Nonetheless, at all such θ at which differentiability is lost, φ actually

remains directionally differentiable. This is most easily seen in Examples 1.2.1 and 1.2.2,

in which the domain of φ is a finite dimensional space. In order to address Examples 1.2.3-

1.2.6, however, a notion of directional differentiability that is suitable for more abstract

spaces D is necessary. Towards this end, we follow Shapiro (1990) and define

Definition 1.2.1. Let D and E be Banach spaces, and φ : Dφ ⊆ D→ E.

(i) The map φ is said to be Hadamard differentiable at θ ∈ Dφ tangentially to a set

D0 ⊆ D, if there is a continuous linear map φ′θ : D0 → E such that:

lim
n→∞

‖φ(θ + tnhn)− φ(θ)

tn
− φ′θ(h)‖E = 0 , (1.13)

for all sequences {hn} ⊂ D and {tn} ⊂ R such that tn → 0, hn → h ∈ D0 as n → ∞

and θ + tnhn ∈ Dφ for all n.
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(ii) The map φ is said to be Hadamard directionally differentiable at θ ∈ Dφ tangentially

to a set D0 ⊆ D, if there is a continuous map φ′θ : D0 → E such that:

lim
n→∞

‖φ(θ + tnhn)− φ(θ)

tn
− φ′θ(h)‖E = 0 , (1.14)

for all sequences {hn} ⊂ D and {tn} ⊂ R+ such that tn ↓ 0, hn → h ∈ D0 as n→∞

and θ + tnhn ∈ Dφ for all n.

As has been extensively noted in the literature, Hadamard differentiability is partic-

ularly suited for generalizing the Delta method to metric spaces (van der Vaart and Wellner,

1996). It is therefore natural to employ an analogous approximation requirement when con-

sidering an appropriate definition of a directional derivative (compare (1.13) and (1.14)).

However, despite this similarity, two key differences distinguish Hadamard differentiability

from Hadamard directional differentiability. First, in (1.14) the sequence of scalars {tn}

must approach 0 “from the right”, heuristically giving the derivative a direction. Second,

the map φ′θ : D0 → E is no longer required to be linear, though it is possible to show

(1.14) implies φ′θ must be homogenous of degree one. It is in fact this latter property that

distinguishes the two differentiability concepts.

Proposition 1.2.1. Let D, E be Banach spaces, D0 ⊆ D be a subspace, and φ : Dφ ⊆ D→ E.

Then, φ is Hadamard directionally differentiable at θ ∈ Dφ tangentially to D0 with linear

derivative φ′θ : D0 → E iff φ is Hadamard differentiable at θ tangentially to D0.

Thus, while Hadamard differentiability implies Hadamard directional differentiabil-

ity, Proposition 1.2.1 shows the converse is true if the directional derivative φ′θ is linear.

In what follows, we will show that linearity is in fact not important for the validity of the

Delta method, but rather the key requirement is that (1.14) holds. Linearity, however, will

play an instrumental role in determining whether the bootstrap is consistent or not.

Remark 1.2.1. A more general definition of Hadamard directional differentiability only

requires the domain D to be a Hausdorff topological vector space; see Shapiro (1990). For

our purposes, however, it is natural to restrict attention to Banach spaces, and we therefore



www.manaraa.com

11

employ the more specialized Definition 1.2.1.

Remark 1.2.2. The condition that the map φ′θ be continuous is automatically satisfied

when the topology on D is metrizable; see Proposition 3.1 in Shapiro (1990). Consequently,

when D is a Banach space, showing (1.14) holds for some map φ′θ : D0 → E suffices for

establishing the Hadamard directional differentiability of φ at θ.

1.2.2.1 Examples Revisited

We next revisit the examples to illustrate the computation of the directional deriva-

tive. The first two examples are straightforward, since the domain of φ is finite dimensional.

Example 1.2.1 (cont.) In this example, simple calculations reveal φ′θ : R→ R is

φ′θ(h) =


h if θ > 0

|h| if θ = 0

−h if θ < 0

. (1.15)

Note that φ is Hadamard differentiable everywhere except at θ = 0, but that it is still

Hadamard directionally differentiable at that point.

Example 1.2.2 (cont.) For θ = (θ(1), θ(2))′ ∈ R2, let j∗ = arg maxj∈{1,2} θ
(j). For any

h = (h(1), h(2))′ ∈ R2, it is then straightforward to verify φ′θ : R2 → R is given by

φ′θ(h) =


h(j∗) if θ(1) 6= θ(2)

max{h(1), h(2)} if θ(1) = θ(2)

. (1.16)

As in (1.15), φ′θ is nonlinear precisely when Hadamard differentiability is not satisfied.

In the next examples the domain of φ is infinite dimensional, and we sometimes

need to employ Hadamard directional tangential differentiability – i.e. D0 6= D.

Example 1.2.3 (cont.) Suppose E[Y 2] < ∞ and that F is compact when endowed with

the norm ‖ · ‖L2(Z). Then, θ0 ∈ C(F), and Lemma 1.6.8 in the Appendix implies φ is

Hadamard directionally differentiable tangentially to C(F) at any θ ∈ C(F). In particular,



www.manaraa.com

12

for ΨF (θ) ≡ arg maxf∈F θ(f), the directional derivative is

φ′θ(h) = sup
f∈ΨF (θ)

h(f) . (1.17)

Interestingly φ′θ is linear at any θ ∈ C(F) for which ΨF (θ) is a singleton, and hence φ is

Hadamard differentiable at such θ. We note in this example, D0 = C(F).

Example 1.2.4 (cont.) For any θ ∈ C(Sd) let ΨSd(θ) ≡ arg maxp∈Sd{〈p, λ〉−θ(p)}. Lemma

B.8 in Kaido (2013b) then shows that φ′θ : C(Sd)→ R is given by

φ′θ(h) = sup
p∈ΨSd (θ)

−h(p) . (1.18)

As in Example 1.2.3, φ : C(Sd) → R is Hadamard differentiable at any θ ∈ C(Sd) at which

ΨSd(θ) is a singleton, but is only Hadamard directionally differentiable otherwise.

Example 1.2.5 (cont.) For any θ = (θ(1), θ(2)) ∈ `∞(R)× `∞(R) define the sets B0(θ) ≡

{u ∈ R : θ(1)(u) = θ(2)(u)} and B+(θ) ≡ {u ∈ R : θ(1)(u) > θ(2)(u)}. It then follows that φ

is Hadamard directionally differentiable at any θ ∈ `∞(R)× `∞(R), and that

φ′θ(h) =

∫
B+(θ)

(h(1)(u)− h(2)(u))w(u)du+

∫
B0(θ)

max{h(1)(u)− h(2)(u), 0}w(u)du (1.19)

for h = (h(1), h(2)) ∈ `∞(R)× `∞(R) – see Lemma 1.6.9 in the Appendix. In particular, if

B0(θ) has zero Lebesgue measure, then φ is Hadamard differentiable at θ.

Example 1.2.6 (cont.) Lemma 3.2 in Beare and Moon (2015) establishes the Hadamard

directional differentiability of M : `∞([0, 1]) → `∞([0, 1]) tangentially to C([0, 1]) at any

concave θ ∈ `∞([0, 1]). Since norms are directionally differentiable at zero, we have

φ′θ(h) =
{∫ 1

0
(M′θ(h)(u)− h(u))2du

} 1
2

(1.20)

where M′θ : C([0, 1]) → `∞([0, 1]) is the Hadamard directional derivative of M at θ. Note

in this example, D0 = C([0, 1]).
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1.2.3 The Delta Method

While the Delta method for Hadamard differentiable functions has become a stan-

dard tool in econometrics (van der Vaart, 1998), the availability of an analogous result for

Hadamard directional differentiable maps does not appear to be as well known. To the best

of our knowledge, this powerful generalization was independently established in Shapiro

(1991) and Dümbgen (1993), but only recently employed in econometrics; see Beare and

Moon (2015), Kaido (2013b), and Kaido and Santos (2014) for examples.

We next aim to establish a mild extension of the result in Dümbgen (1993) by

showing the Delta method also holds in probability – a result we require for our subsequent

derivations. Towards this end, we formalize our setup by imposing the following:

Assumption 1.2.1. (i) D and E are Banach spaces with norms ‖·‖D and ‖·‖E respectively;

(ii) φ : Dφ ⊆ D→ E is Hadamard directionally differentiable at θ0 tangentially to D0.

Assumption 1.2.2. (i) θ0 ∈ Dφ and there are θ̂n : {Xi}ni=1 → Dφ such that, for some

rn ↑ ∞, rn{θ̂n − θ0}
L→ G0 in D; (ii) G0 is tight and its support is included in D0.

Assumption 1.2.3. (i) φ′θ0 can be continuously extended to D (rather than D0 ⊆ D); (ii)

D0 is closed under addition – i.e. h1 + h2 ∈ D0 for all h1, h2 ∈ D0.

Assumption 1.2.1 simply formalizes our previous discussion by requiring that the

map φ : Dφ → E be Hadamard directionally differentiable at θ0. In Assumption 1.2.2(i), we

additionally impose the existence of an estimator θ̂n for θ0 that is asymptotically distributed

according to G0 in the Hoffman-Jørgensen sense. The scaling rn equals
√
n in Examples

1.2.1-1.2.6, but may differ in nonparametric problems. In turn, Assumption 1.2.2(ii) imposes

that the support of the limiting process G0 be included on the tangential set D0, and requires

the regularity condition that the random variable G0 be tight. Assumption 1.2.3(i) allows

us to view the map φ′θ0 as well defined and continuous on all of D (rather than just D0),

and is automatically satisfied when D0 is closed; see Remark 1.2.3. We emphasize, however,

that Assumption 1.2.3(i) does not demand differentiability of φ : Dφ → E tangentially to D

– i.e. the extension of φ′θ0 need not satisfy (1.14) for h ∈ D \ D0. For instance, in Example
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1.2.3 φ is differentiable tangentially to D0 = C(F), but the map φ′θ in (1.17) is naturally

well defined and continuous on D = `∞(F). Finally, Assumption 1.2.3(ii) imposes that D0

be closed under addition which, since D0 is necessarily a cone, is equivalent to demanding

that D0 be convex. This mild requirement is only employed in some of our results and helps

ensure that, when multiple extensions of φ′θ0 exist, the choice of extension has no impact in

our arguments.

Remark 1.2.3. If D0 is closed, then the continuity of φ′θ0 : D0 → E and Theorem 4.1 in

Dugundji (1951) imply that φ′θ0 admits a continuous extension to D – i.e. there exists a

continuous map φ̄′θ0 : D→ E such that φ̄′θ0(h) = φ′θ0(h) for all h ∈ D0. Thus, if D0 is closed,

then Assumption 1.2.3(i) is automatically satisfied.

Assumptions 1.2.1 and 1.2.2 suffice for establishing the validity of the Delta method.

The probabilistic version of the Delta method, however, additionally requires Assumption

1.2.3.

Theorem 1.2.1. If Assumptions 1.2.1 and 1.2.2 hold, then rn{φ(θ̂n)− φ(θ0)} L→ φ′θ0(G0).

If in addition Assumption 1.2.3(i) is also satisfied, then it follows that

rn{φ(θ̂n)− φ(θ0)} = φ′θ0(rn{θ̂n − θ0}) + op(1) . (1.21)

The intuition behind Theorem 1.2.1 is the same that motivates the traditional Delta

method. Heuristically, the theorem can be obtained from the approximation

rn{φ(θ̂n)− φ(θ0)} ≈ φ′θ0(rn{θ̂n − θ0}) , (1.22)

Assumption 1.2.2(i), and the continuous mapping theorem applied to φ′θ0 . Thus, the key

requirement is not that φ′θ0 be linear, or equivalently that φ be Hadamard differentiable,

but rather that (1.22) holds in an appropriate sense – a condition ensured by Hadamard

directional differentiability. Following this insight, Theorem 1.2.1 can be established using

the same arguments as in the proof of the traditional Delta method (van der Vaart and

Wellner, 1996). It is worth noting that directional differentiability of φ is only assumed at
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θ0. In particular, continuity of φ′θ0 in θ0 is not required since such condition is often violated;

see Examples 1.2.1 and 1.2.2. Strengthening the Delta method to hold in probability further

requires Assumption 1.2.3(i) to ensure φ′θ0(rn{θ̂n − θ0}) is well defined.2

We conclude this section with a simple Corollary of wide applicability.

Corollary 1.2.1. Let {Xi}ni=1 be a stationary sequence of random variables with Xi ∈ Rd

and marginal distribution P . Suppose F is a collection of measurable functions f : Rd → R,

and let θ̂n : F → R and θ0 : F → R be maps pointwise defined by

θ̂n(f) ≡ 1

n

n∑
i=1

f(Xi) θ0(f) ≡
∫
f(x)dP (x) . (1.23)

Suppose
√
n{θ̂n − θ0}

L→ G0 in `∞(F) for some tight process G0 ∈ `∞(F), and define

C(F) ≡ {g : F → R : g is continuous under ‖f‖2G0
≡ E[G0(f)2]} .

If for some Banach space E, φ : `∞(F) → E is Hadamard directionally differentiable at θ0

tangentially to C(F), then
√
n{φ(θ̂n)− φ(θ0)} L→ φ′θ0(G0) in E.

Corollary 1.2.1 specializes Theorem 1.2.1 to the case where the parameter of interest

φ(θ0) can be expressed as a transformation of a (possibly uncountable) collection of mo-

ments. Primitive conditions for the functional central limit theorem to hold can be found,

for example, in Dehling and Philipp (2002). As a special case, Corollary 1.2.1 immediately

delivers the relevant asymptotic distributions in Examples 1.2.1, 1.2.2, 1.2.3 and 1.2.5, but

not in Examples 1.2.4 or 1.2.6. In the latter two examples θ̂n and θ0 do not take the form

in (1.23), and we therefore need to employ Theorem 1.2.1 together with the asymptotic dis-

tribution of
√
n{θ̂n − θ0} as available, for example, in Kaido and Santos (2014) for support

functions and Beare and Moon (2015) for Example 1.2.6.

2Without Assumption 1.2.3(i), the domain of φ′θ0 must include D0, but possibly not D \ D0. Thus, since

rn{θ̂n − θ0} may not belong to D0, φ′θ0(rn{θ̂n − θ0}) may otherwise not be well defined.
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1.3 The Bootstrap

While Theorem 1.2.1 enables us to obtain an asymptotic distribution, a suitable

method for estimating this limiting law is still required. In this section we will assume

that the bootstrap “works” for θ̂n and examine how to leverage this result to estimate the

asymptotic distribution of rn{φ(θ̂n) − φ(θ0)}. We will show that bootstrap consistency

is often lost under Hadamard directional differentiable transformations, and propose an

alternative resampling scheme which generalizes existing approaches in the literature.

1.3.1 Bootstrap Setup

We begin by introducing the general setup under which we examine bootstrap con-

sistency. Throughout, we let θ̂∗n denote a “bootstrapped version” of θ̂n, and assume the

limiting distribution of rn{θ̂n − θ0} can be consistently estimated by the law of

rn{θ̂∗n − θ̂n} (1.24)

conditional on the data. In order to formally define θ̂∗n, while allowing for diverse resampling

schemes, we simply impose that θ̂∗n be a function mapping the data {Xi}ni=1 and random

weights {Wi}ni=1 that are independent of {Xi}ni=1 into Dφ. This abstract definition suffices

for encompassing the nonparametric, Bayesian, block, score, and weighted bootstrap as

special cases; see Remark 1.3.2.

Formalizing the notion of bootstrap consistency further requires us to employ a mea-

sure of distance between the limiting distribution G0 and its bootstrap estimator. Towards

this end, we follow van der Vaart and Wellner (1996) and utilize the bounded Lipschitz

metric. Specifically, for a metric space A with norm ‖ · ‖A, denote the set of Lipschitz

functionals whose level and Lipschitz constant are bounded by one by

BL1(A) ≡ {f : A→ R : sup
a∈A
|f(a)| ≤ 1 and |f(a1)− f(a2)| ≤ ‖a1 − a2‖A} . (1.25)

The bounded Lipschitz distance between two measures L1 and L2 on A then equals the
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largest discrepancy in the expectation they assign to functions in BL1(A), denoted

dBL(L1, L2) ≡ sup
f∈BL1(A)

|
∫
f(a)dL1(a)−

∫
f(a)dL2(a)| . (1.26)

Given the introduced notation, we can measure the distance between the law of

rn{θ̂∗n − θ̂n} conditional on {Xi}ni=1, and the limiting distribution of rn{θ̂n − θ0} by3

sup
f∈BL1(D)

|E[f(rn{θ̂∗n − θ̂n})|{Xi}ni=1]− E[f(G0)]| . (1.27)

Employing the distribution of rn{θ̂∗n − θ̂n} conditional on the data to approximate the

distribution of G0 is then asymptotically justified if their distance, equivalently (1.27),

converges in probability to zero. This type of consistency can in turn be exploited to

validate the use of critical values obtained from the distribution of rn{θ̂∗n − θ̂n} conditional

on {Xi}ni=1 to conduct inference or construct confidence regions; see Remark 1.3.1.

We formalize the above discussion by imposing the following assumptions on θ̂∗n:

Assumption 1.3.1. (i) θ̂∗n : {Xi,Wi}ni=1 → Dφ with {Wi}ni=1 independent of {Xi}ni=1; (ii)

θ̂∗n satisfies supf∈BL1(D) |E[f(rn{θ̂∗n − θ̂n})|{Xi}ni=1]− E[f(G0)]| = op(1).

Assumption 1.3.2. (i) The sequence rn{θ̂∗n− θ̂n} is asymptotically measurable (jointly in

{Xi,Wi}ni=1); (ii) f(rn{θ̂∗n − θ̂n}) is a measurable function of {Wi}ni=1 outer almost surely

in {Xi}ni=1 for any continuous and bounded f : D→ R .

Assumption 1.3.1(i) defines θ̂∗n in accord with our discussion, while Assumption

1.3.1(ii) imposes the consistency of the law of rn{θ̂∗n − θ̂n} conditional on the data for

the distribution of G0 – i.e. the bootstrap “works” for the estimator θ̂n. In addition,

in Assumption 1.3.2 we further demand mild measurability requirements on rn{θ̂∗n − θ̂n}.

These requirements are automatically satisfied in the context of Corollary 1.2.1, where θ̂n

and θ̂∗n correspond to the empirical and bootstrapped empirical processes respectively.

3More precisely, E[f(rn{θ̂∗n − θ̂n})|{Xi}ni=1] denotes the outer expectation with respect to the joint law
of {Wi}ni=1, treating the observed data {Xi}ni=1 as constant.
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Remark 1.3.1. In the special case where D = Rd, Assumption 1.3.1(ii) implies that:

sup
t∈A
|P (rn{θ̂∗n − θ̂n} ≤ t|{Xi}ni=1)− P (G0 ≤ t)| = op(1) (1.28)

for any closed subset A of the continuity points of the cdf of G0; see Kosorok (2008). Thus,

consistency in the bounded Lipschitz metric implies consistency of the corresponding cdfs.

Result (1.28) then readily yields consistency of the corresponding quantiles at points at

which the cdf of G0 is continuous and strictly increasing.

Remark 1.3.2. Suppose {Xi}ni=1 is an i.i.d. sample, and let the parameter of interest be

θ0 = E[X] which we estimate by the sample mean θ̂n = X̄ ≡ 1
n

∑
iXi. In this context, the

limiting distribution of
√
n{θ̂n − θ0} can be approximated by law of

√
n{ 1

n

n∑
i=1

X∗i − X̄} , (1.29)

where the {X∗i }ni=1 are drawn with replacement from the realized sample {Xi}ni=1. Equiva-

lently, if {Wi}ni=1 is independent of {Xi}ni=1 and jointly distributed according to a multino-

mial distribution over n categories, each with probability 1/n, then (1.29) becomes

√
n{ 1

n

n∑
i=1

WiXi − X̄} . (1.30)

Thus, letting θ̂∗n = 1
n

∑
iWiXi we may express (1.29) in the form

√
n{θ̂∗n − θ̂n}.

1.3.2 A Necessary and Sufficient Condition

When the transformation φ : Dφ → E is Hadamard differentiable at θ0, the consis-

tency of the bootstrap is inherited by the transformation itself. In other words, if Assump-

tion 1.3.1(ii) is satisfied, and φ is Hadamard differentiable, then the asymptotic distribution

of rn{φ(θ̂n)− φ(θ0)} can be consistently estimated by the law of

rn{φ(θ̂∗n)− φ(θ̂n)} (1.31)
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conditional on the data (van der Vaart and Wellner, 1996). For conciseness, we refer to the

law of (1.31) conditional on the data as the “standard” bootstrap.

Unfortunately, while the Delta method generalizes to Hadamard directionally dif-

ferentiable functionals, we know by way of example that the consistency of the standard

bootstrap may not (Andrews, 2000). In what follows, we aim to fully characterize the con-

ditions under which the standard bootstrap is consistent when φ is Hadamard directionally

differentiable. In this regard, a crucial role is played by the following concept:

Definition 1.3.1. Let G1 ∈ D0 be independent of G0 and have the same distribution as

G0. We then say φ′θ0 : D0 → E is G0-translation invariant if and only if it satisfies

φ′θ0(G0 +G1)− φ′θ0(G0) is independent of G0 . (1.32)

Intuitively, φ′θ0 being G0-translation invariant is equivalent to the distribution of

φ′θ0(G0 + h)− φ′θ0(h) (1.33)

being constant (invariant) for all h in the support of G0. For example, if φ is Hadamard

differentiable at θ0, then φ′θ0 is linear and hence immediately G0-translation invariant. On

the other hand, it is also straightforward to verify that φ′θ0 fails to beG0-translation invariant

in Examples 1.2.1 and 1.2.2, both instances in which the standard bootstrap is known to

fail; see Bickel et al. (1997) and Andrews (2000) respectively. As the following theorem

shows, this relationship is not coincidental. The standard bootstrap is in fact consistent if

and only if φ′θ0 is G0-translation invariant.

Theorem 1.3.1. Let Assumptions 1.2.1, 1.2.2, 1.2.3, 1.3.1, and 1.3.2 hold, and suppose

that 0 ∈ D is in the support of G0. Then, φ′θ0 is G0-translation invariant if and only if

sup
f∈BL1(E)

|E[f(rn{φ(θ̂∗n)− φ(θ̂n)})|{Xi}ni=1]− E[f(φ′θ0(G0))]| = op(1) . (1.34)

A powerful implication of Theorem 1.3.1 is that in verifying whether the standard

bootstrap is valid at a conjectured θ0, we need only examine whether φ′θ0 is G0-translation
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invariant – an often straightforward exercise; see Remark 1.3.3. The theorem requires that

0 ∈ D be in the support of G0, which is satisfied, for example, whenever G0 is a centered

Gaussian process. This requirement is imposed to establish that φ′θ0 being G0-translation

invariant implies the bootstrap is consistent. In particular, without this assumption, it is

only possible to show that the bootstrap is consistent for the law in (1.33), which recall

does not depend on h. If in addition 0 ∈ D is in the support of G0, then from (1.33) we can

conclude the bootstrap limit is the desired one, since then

φ′θ0(G0 + h)− φ′θ0(h)
d
= φ′θ0(G0) , (1.35)

where “
d
=” denotes equality in distribution.4 Relationship (1.35) is also useful in examining

whether φ′θ0 is G0-transaltion invariant. For instance, in the examples we study it is possible

to show condition (1.35) is violated whenever φ is not Hadamard differentiable, and hence

that the standard bootstrap is inconsistent.

Remark 1.3.3. In Examples 1.2.1, 1.2.2, 1.2.3, 1.2.4, 1.2.5, and 1.2.6 the map φ′θ0 : D0 → R

satisfies

φ′θ0(h1 + h2) ≤ φ′θ0(h1) + φ′θ0(h2) (1.36)

for all h1, h2 ∈ D0. Moreover, since G0 is Gaussian in these examples, it is possible to verify

that whenever φ is not Hadamard differentiable there is a h? ∈ D0 such that

P
(
φ′θ0(G0 + h?) < φ′θ0(G0) + φ′θ0(h?)

)
> 0 . (1.37)

Results (1.36) and (1.37) together imply the distribution of φ′θ0(G0 + h?)− φ′θ0(h?) is first

order stochastically dominated by that of φ′θ0(G0). Therefore, by (1.35), φ′θ0 is not G0-

translation invariant, and from Theorem 1.3.1 we conclude the bootstrap fails.

4The result is exploiting that φ′θ0(0) = 0 implies φ′θ0(G0 +0)−φ′θ0(0) = φ′θ0(G0) almost surely; see Lemma
1.6.3 in the Appendix for a formal derivation of (1.35).
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1.3.2.1 Leading Case: Gaussian G0

As Theorem 1.3.1 shows, the consistency of the standard bootstrap is equivalent to

the map φ′θ0 : D0 → E being G0-translation invariant – a condition concerning both φ′θ0 and

G0. In most applications, however, G0 is a centered Gaussian measure, and this additional

structure has important implications for φ′θ0 being G0-translation invariant. The following

theorem establishes that, under Gaussianity of G0, φ′θ0 is in fact G0-translation invariant if

and only if it is linear on the support of G0.

Theorem 1.3.2. If Assumptions 1.2.1, 1.2.2(ii) hold, and G0 is a centered Gaussian mea-

sure, then φ′θ0 is G0-translation invariant if and only if it is linear on the support of G0.

One direction of the theorem is trivial, since linearity of φ′θ0 immediately implies

φ′θ0 must be G0-translation invariant (see (1.32)). The converse, however, is a far subtler

result which we establish by relying on insights in van der Vaart (1991c) and Hirano and

Porter (2012); see Remark 1.3.4. While perhaps not of independent interest, Theorem 1.3.2

has important implications when combined with our previous results. First, in conjunction

with Theorem 1.3.1, Theorem 1.3.2 implies that establishing bootstrap consistency reduces

to simply verifying the linearity of φ′θ0 . Second, together with Proposition 1.2.1, these

results show that under the maintained assumptions, Hadamard differentiability of φ at θ0

is a necessary and sufficient condition for bootstrap consistency. In particular, we conclude

that the bootstrap is inconsistent in all instances for which φ is not Hadamard differentiable

at θ0. The failure of the standard bootstrap is therefore an inherent property of these

“irregular” models.

A final implication of Theorems 1.3.1 and 1.3.2 that merits discussion follows from

exploiting that Gaussianity of G0 and bootstrap consistency together imply linearity of φ′θ0 .

In particular, whenever φ′θ0 is linear and G0 is Gaussian φ′θ0(G0) must also be Gaussian (in

E), and thus bootstrap consistency implies Gaussianity of φ′θ0(G0). Conversely, we conclude

that the standard bootstrap fails whenever the asymptotic distribution is not Gaussian. We

formalize this conclusion in the following Corollary:
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Corollary 1.3.1. Let Assumptions 1.2.1, 1.2.2, 1.2.3, 1.3.1, 1.3.2 hold, and G0 be a cen-

tered Gaussian measure. If the limiting distribution of rn{φ(θ̂n)− φ(θ0)} is not Gaussian,

then it follows that the standard bootstrap is inconsistent.

Remark 1.3.4. If φ′θ0 is G0-translation invariant, then the characteristic functions of

{φ′θ0(G0 + h) − φ′θ0(h)} and φ′θ0(G0) must be equal for any h in the support of G0 (see

(1.35)). The proof of Theorem 1.3.2 relates these characteristic functions through the

Cameron-Martin theorem to show their equality implies φ′θ0 must be linear. A similar

insight was used in van der Vaart (1991c) and Hirano and Porter (2012) who compare char-

acteristic functions in a limit experiment to conclude regular estimability of a functional

implies its differentiability.

1.3.3 An Alternative Approach

Theorems 1.3.1 and 1.3.2 together establish that standard bootstrap procedures are

inconsistent whenever φ is not fully differentiable at θ0 and G0 is Gaussian. Thus, given the

pervasive failure of the bootstrap in these models, we now proceed to develop a consistent

estimator for the limiting distribution in Theorem 1.2.1 (φ′θ0(G0)).

Heuristically, the inconsistency of the standard bootstrap arises from its inability to

properly estimate the directional derivative φ′θ0 whenever it is not G0-translation invariant.

However, the underlying bootstrap process rn{θ̂∗n− θ̂n} still provides a consistent estimator

for the law of G0. Intuitively, a consistent estimator for the limiting distribution in Theorem

1.2.1 can therefore be constructed employing the law of

φ̂′n(rn{θ̂∗n − θ̂n}) (1.38)

conditional on the data for φ̂′n : D → E a suitable estimator of the directional derivative

φ′θ0 : D0 → E. This approach is in fact closely related to the procedure developed in

Andrews and Soares (2010) for moment inequality models, and other inferential methods

designed for specific examples of φ : D→ E; see Section 1.3.3.1 below.

In order for this approach to be valid, we require φ̂′n to satisfy the following condition:
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Assumption 1.3.3. φ̂′n : D→ E is a function of {Xi}ni=1, satisfying for every compact set

K ⊆ D0, Kδ ≡ {a ∈ D : infb∈K ‖a− b‖D < δ}, and every ε > 0, the property:

lim
δ↓0

lim sup
n→∞

P
(

sup
h∈Kδ

‖φ̂′n(h)− φ′θ0(h)‖E > ε
)

= 0 . (1.39)

Unfortunately, the requirement in (1.39) is complicated by the presence of the δ-

enlargement of K. Without such enlargement, requirement (1.39) could just be interpreted

as demanding that φ̂′n be uniformly consistent for φ′θ0 on compact setsK ⊆ D0. Heuristically,

the need to consider Kδ arises from rn{θ̂∗n − θ̂n} only being guaranteed to lie in D and not

necessarily D0. However, because G0 lies in compact subsets of D0 with arbitrarily high

probability, it is possible to conclude that rn{θ̂∗n − θ̂n} will eventually be “close” to such

subsets of D0. Thus, φ̂′n need only be well behaved in arbitrary small neighborhoods of

compact sets in D0, which is the requirement imposed in Assumption 1.3.3. It is worth

noting, however, that in many applications stronger, but simpler, conditions than (1.39)

can be easily verified. For instance, under appropriate additional requirements, the δ factor

in (1.39) may be ignored, and it may even suffice to just verify φ̂′n(h) is consistent for φ′θ0(h)

for every h ∈ D0; see Remarks 1.3.5 and 1.3.6.

Remark 1.3.5. In certain applications, it is sufficient to require φ̂′n : D→ E to satisfy

sup
h∈K
‖φ̂′n(h)− φ′θ0(h)‖E = op(1) , (1.40)

for any compact set K ⊆ D. For instance, if D = Rd, then the closure of Kδ is compact in D

for any compact K ⊆ D0, and hence (1.40) implies (1.39). Alternatively, if D is separable,

rn{θ̂∗n − θ̂n} is Borel measurable as a function of {Xi,Wi}ni=1 and tight for each n, then

rn{θ̂∗n − θ̂n} is uniformly tight and (1.40) may be used in place of (1.39).5

Remark 1.3.6. Assumption 1.3.3 greatly simplifies whenever the modulus of continuity of

φ̂′n : D → E can be controlled outer almost surely. For instance, if ‖φ̂′n(h1) − φ̂′n(h2)‖E ≤
5Under uniform tightness, for every ε > 0 there is a compact set K such that lim supn→∞ P (rn{θ̂∗n− θ̂n} /∈

K) < ε. In general, however, we only know rn{θ̂∗n − θ̂n} to be asymptotically tight, in which case we are
only guaranteed lim supn→∞ P (rn{θ̂∗n − θ̂n} /∈ Kδ) < ε for every δ > 0.
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C‖h1 − h2‖D for some C <∞ and all h1, h2 ∈ D, then showing that for any h ∈ D0

‖φ̂′n(h)− φ′θ0(h)‖E = op(1) (1.41)

suffices for establishing (1.39) holds; see Lemma 1.6.6 in the Appendix. This observation is

particularly helpful in the analysis of Examples 1.2.3 and 1.2.4; see Section 1.3.3.1.

Given Assumption 1.3.3 we can establish the validity of the proposed procedure.

Theorem 1.3.3. Under Assumptions 1.2.1, 1.2.2, 1.2.3(i), 1.3.1, 1.3.2 and 1.3.3, it follows

that

sup
f∈BL1(E)

|E[f(φ̂′n(rn{θ̂∗n − θ̂n}))|{Xi}ni=1]− E[f(φ′θ0(G0))]| = op(1) . (1.42)

Theorem 1.3.3 shows that the law of φ̂′n(rn{θ̂∗n−θ̂n}) conditional on the data is indeed

consistent for the limiting distribution of rn{φ(θ̂n) − φ(θ0)} derived in Theorem 1.2.1. In

particular, when φ(θ̂n) is a test statistic, and hence scalar valued, Theorem 1.3.3 enables

us to compute critical values for inference by simulating the finite sample distribution

of φ̂′n(rn{θ̂∗n − θ̂n}) conditional on {Xi}ni=1 (but not {Wi}ni=1). The following immediate

corollary formally establishes this claim.

Corollary 1.3.2. Let Assumptions 1.2.1, 1.2.2, 1.2.3(i), 1.3.1, 1.3.2 and 1.3.3 hold, E =

R, and

ĉ1−α ≡ inf{c : P (φ̂′n(rn{θ̂∗n − θ̂n}) ≤ c|{Xi}ni=1) ≥ 1− α} . (1.43)

If the cdf of φ′θ0(G0) is strictly increasing at its 1− α quantile c1−α, then ĉ1−α
p→ c1−α.

It is worth noting that φ′θ0 being the directional derivative of φ at θ0 is actually

never exploited in the proofs of Theorem 1.3.3 or Corollary 1.3.2. Therefore, these results

can more generally be interpreted as providing a method for approximating distributions of

random variables that are of the form τ(G0), where G0 ∈ D is a tight random variable and

τ : D → E is an unknown continuous map. Finally, it is important to emphasize that due

to an appropriate lack of continuity of φ′θ0 in θ0, the “naive” estimator φ̂′n = φ′
θ̂n

often fails
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to satisfy Assumption 1.3.3. Nonetheless, alternative estimators are still easily obtained as

we next discuss in the context of Examples 1.2.1-1.2.6.

1.3.3.1 Examples Revisited

In order to illustrate the applicability of Theorem 1.3.3, we now return to Examples

1.2.1-1.2.6 and show existing inferential methods may be reinterpreted to fit (1.38). For

conciseness, we group the analysis of examples that share a similar structure.

Examples 1.2.1 and 1.2.2 (cont.) In the context of Example 1.2.2, let {Xi}ni=1 be an

i.i.d. sample with Xi = (X
(1)
i , X

(2)
i )′ ∈ R2, and define X̄(j) ≡ 1

n

∑
iX

(j)
i for j ∈ {1, 2}.

Denoting ĵ∗ = arg maxj∈{1,2} X̄
(j) and letting κn → 0 satisfy κn

√
n→∞, we then define

φ̂′n(h) =


h(ĵ∗) if |X̄(1) − X̄(2)| > κn

max{h(1), h(2)} if |X̄(1) − X̄(2)| ≤ κn
, (1.44)

(compare to (1.16)). Under appropriate moment restrictions, it is then straightforward to

verify Assumption 1.3.3 holds, since φ̂′n : R2 → R in fact satisfies

lim sup
n→∞

P
(
φ̂′n(h) = φ′θ0(h) for all h ∈ R2

)
= 1 . (1.45)

If {X∗i }ni=1 is a sample drawn with replacement from {Xi}ni=1, and X̄∗ = 1
n

∑
iX
∗
i , then

(1.38) reduces to φ̂′n(
√
n{X̄∗ − X̄}), which was originally studied in Andrews and Soares

(2010) and Bugni (2010) for conducting inference in moment inequalities models. Example

1.2.1 can be studied in a similar manner and we therefore omit its analysis.

Examples 1.2.3 and 1.2.4 (cont.) In Example 1.2.3, recall ΨF (θ) ≡ arg maxf∈F θ(f)

and suppose Ψ̂F (θ0) is a Hausdorff consistent estimate of ΨF (θ0) – i.e. it satisfies6

dH(ΨF (θ0), Ψ̂F (θ0), ‖ · ‖L2(Z)) = op(1) . (1.46)

6For subsets A,B of a metric space with norm ‖ · ‖, the directed Hausdorff distance is ~dH(A,B) ≡
supa∈A infb∈B ‖a− b‖, and the Hausdorff distance is dH(A,B, ‖ · ‖) ≡ max{~dH(A,B, ‖ · ‖), ~dH(B,A, ‖ · ‖)}.
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A natural estimator for φ′θ0 is then given by φ̂′n : `∞(F)→ R equal to (compare to (1.17))

φ̂′n(h) = sup
f∈Ψ̂F (θ0)

h(f) , (1.47)

which can easily be shown to satisfy Assumption 1.3.3; see Lemma 1.6.10 in the Appendix.

If the data is i.i.d., {(Y ∗i , Z∗i )}ni=1 is a sample drawn with replacement from {(Yi, Zi)}ni=1,

and
√
n{θ̂∗n − θ̂n} is the bootstrapped empirical process, then (1.38) becomes

φ̂′n(
√
n{θ̂∗n − θ̂n}) = sup

f∈Ψ̂F (θ0)

1√
n

n∑
i=1

{Y ∗i f(Z∗i )− 1

n

n∑
i=1

Yif(Zi)} , (1.48)

which was originally proposed in Andrews and Shi (2013) for conducting inference in con-

ditional moment inequalities models. A similar approach is pursued in Kaido (2013b) and

Kaido and Santos (2014) in the context of Example 1.2.4.

Examples 1.2.5 and 1.2.6 (cont.) Recall that in Example 1.2.5, θ0 = (θ
(1)
0 , θ

(2)
0 ) with

θ
(j)
0 ∈ `∞(R) for j ∈ {1, 2}, and that B0(θ0) = {u ∈ R : θ

(1)
0 (u) = θ

(2)
0 (u)} and B+(θ0) =

{u ∈ R : θ
(1)
0 (u) > θ

(2)
0 (u)}. For B̂0(θ0) and B̂+(θ0) estimators of B0(θ0) and B+(θ)

respectively, it is then natural for any h ∈ (h(1), h(2)) ∈ `∞(R)× `∞(R) to define

φ̂′n(h) =

∫
B̂+(θ0)

(h(1)(u)−h(2)(u))w(u)du+

∫
B̂0(θ0)

max{h(1)(u)−h(2)(u), 0}w(u)du (1.49)

(compare to (1.19)). For A4B the symmetric set difference between sets A and B, it is then

straightforward to verify Assumption 1.3.3 is satisfied provided the Lebesgue measure of

B0(θ0)4B̂0(θ0) and B+(θ0)4B̂+(θ0) converges in probability to zero. When
√
n{θ̂∗n− θ̂} is

given by the bootstrap empirical process, φ̂′n(
√
n{θ̂∗n− θ̂n}) reduces to the procedure studied

in Linton et al. (2010) for testing stochastic dominance. For a related analysis of Example

1.2.6 we refer the reader to Beare and Shi (2015).

1.3.4 Local Analysis

As evidenced in Examples 1.2.1-1.2.6, φ(θ̂n) is not a regular estimator for φ(θ0)

whenever φ is not Hadamard differentiable at θ0. In order to evaluate the usefulness of
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Theorems 1.2.1 and 1.3.3 for conducting inference, it is therefore crucial to complement these

results by studying the asymptotic behavior of rn{φ(θ̂n)−φ(θ0)} under local perturbations

to the underlying distribution of the data. In this section, we first develop such a local

analysis and then proceed to examine its implications for inference.

For simplicity, we specialize to the i.i.d. setting where each Xi is distributed ac-

cording to P ∈ P. Here, P denotes the set of possible distributions for Xi and may be

parametric or nonparametric in particular applications. To explicitly allow θ0 to depend on

P , we let θ0 be the value a known map θ : P → Dφ takes at the unknown value P – e.g.

θ0 ≡ θ(P ).7 The following Assumption formally imposes these requirements.

Assumption 1.3.4. (i) {Xi}ni=1 is an i.i.d. sequence with each Xi ∈ Rd distributed

according to P ∈ P; (ii) θ0 ≡ θ(P ) for some known map θ : P→ Dφ.

We examine the effect of locally perturbing the distribution P through the frame-

work of local asymptotic normality. Heuristically, we aim to conduct an asymptotic analysis

in which the distribution of Xi depends on the sample size n and converges smoothly to a

distribution P ∈ P. In order to formalize this approach, we define a “curve in P” by:

Definition 1.3.2. A function t 7→ ℘t mapping a neighborhood N ⊆ R of zero into P is a

“curve in P” if ℘0 = P and for some ℘′0 : Rd → R and dominating measure µ

lim
t→0

∫
1

t2

(d℘ 1
2
t

dµ
(x)− dP

1
2

dµ
(x)− t℘′0(x)

)2
dµ(x) = 0 . (1.50)

Thus, a curve in P is simply a parametric submodel that is smooth in the sense

of being differentiable in quadratic mean. Following the literature on limiting experiments

(Le Cam, 1986), we consider a local analysis in which at sample size n, Xi is distributed ac-

cording to ℘η/
√
n where ℘ is an arbitrary curve in P and η is an arbitrary scalar. Intuitively,

as in the literature on semiparametric efficiency, such analysis enables us to characterize

the local asymptotic behavior along arbitrarily rich parametric submodels of the possibly

nonparametric set P. To proceed, however, we must first specify how the original estimator

θ̂n is affected by these local perturbations, and to this end we impose:

7For instance, in Examples 1.2.1 and 1.2.2 the known map P 7→ θ(P ) is given by θ(P ) ≡
∫
xdP (x).
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Assumption 1.3.5. (i) θ̂n is a regular estimator for θ(P );8 (ii) For every curve ℘ in P

there is a θ′(℘) ∈ D0 such that ‖θ(℘t)− θ(P )− tθ′(℘)‖D = o(t) (as t→ 0).

Assumption 1.3.5(i) demands that the distributional convergence of θ̂n be robust to

local perturbations of P , while Assumption 1.3.5(ii) imposes that the parameter P 7→ θ(P )

be smooth in P . As shown in van der Vaart (1991c), these requirements are closely related,

whereby Assumption 1.3.5(i) and mild regularity conditions on θ̂n and the tangent space

actually imply Assumption 1.3.5(ii). Assumption 1.3.5 is immediately satisfied, for instance,

when θ(P ) is a (possible uncountable) collection of moments, as in Examples 1.2.1, 1.2.2,

1.2.3 and 1.2.5. We also note that our results can still be applied in instances where θ(P )

does not admit for a regular estimator, but can be expressed as a Hadamard directionally

transformation of a regular parameter; see Remark 1.3.7.

Remark 1.3.7. Suppose θ(P ) is not a regular parameter, but that θ(P ) = ψ(ϑ(P )) for

some parameter ϑ(P ) admitting a regular estimator ϑ̂n, and a Hadamard directionally

differentiable map ψ. By the chain rule for Hadamard directionally differentiable maps

(Shapiro, 1990), our results may then be applied with φ̃ ≡ φ ◦ ψ, θ̃(P ) ≡ ϑ(P ), and ϑ̂n in

place of φ, θ(P ) and θ̂n respectively.

Given the stated assumptions, we can now establish the following Lemma.

Lemma 1.3.1. For an arbitrary curve ℘ in P and η ∈ R let Pn = ℘η/
√
n and Ln denote

the law under
⊗n

i=1 Pn. If Assumptions 1.2.1, 1.2.2, 1.2.3, 1.3.4, and 1.3.5 hold, then

√
n{φ(θ̂n)− φ(θ(Pn))} Ln→ φ′θ0(G0 + ηθ′(℘))− φ′θ0(ηθ′(℘)) . (1.51)

Lemma 1.3.1 characterizes the asymptotic distribution of φ(θ̂n) under a sequence

of local perturbations to P . As expected, the asymptotic limit in (1.51) need not equal

the pointwise asymptotic distribution derived in Theorem 1.2.1. Intuitively, the asymptotic

approximation in (1.51) reflects the importance of local parameters and for this reason

8Formally, θ̂n is a regular estimator if for every curve ℘ in P and every η ∈ R we have
√
n{θ̂n−θ(Pn)} Ln→

G0, where Pn ≡ ℘η/√n and Ln denotes the law under
⊗n

i=1 Pn.
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can be expected to provide a better approximation to finite sample distributions – a point

forcefully argued in the study of moment inequality models by Andrews and Soares (2010)

and Andrews and Shi (2013); see Remark 1.3.8 below.

Remark 1.3.8. In the context of Example 1.2.2, let {Xi}ni=1 be an i.i.d. sample with

Xi ∼ P , θ̂n = 1
n

∑
Xi and θ(P ) ≡

∫
xdP (x). By Theorem 1.2.1 we then obtain

√
n{φ(θ̂n)− φ(θ(P ))} L→

 G(j∗)
0 if θ(1)(P ) 6= θ(2)(P )

max{G(1)
0 ,G(2)

0 } if θ(1)(P ) = θ(2)(P )
, (1.52)

where G0 = (G(1)
0 ,G(2)

0 )′ is a normal vector, and j∗ = arg maxj∈{1,2} θ
(j)(P ) (see (1.16)).

As argued in Andrews and Soares (2010), the discontinuity of the pointwise asymptotic

distribution in (1.52) can be a poor approximation for the finite sample distribution which

depends continuously on θ(1)(P )− θ(2)(P ). An asymptotic analysis local to a P such that

θ(1)(P ) = θ(2)(P ), however, let us address this problem. Specifically, for a submodel ℘ with

θ(℘t) = θ(P ) + th for t ∈ R and h = (h(1), h(2))′ ∈ R2, Lemma 1.3.1 yields

√
n{φ(θ̂n)− φ(θ(Pn))} Ln→ max{G(1)

0 + h(1),G(2)
0 + h(2)} −max{h(1), h(2)} . (1.53)

Thus, by reflecting the importance of the “slackness” parameter h, result (1.53) provides a

better framework with which to evaluate the performance of our proposed procedure.

It is interesting to note that by setting η = 0 in (1.51) we can conclude from Lemma

1.3.1 that φ(θ̂n) is a regular estimator for φ(θ(P )) if and only if

φ′θ0(G0 + ηθ′(℘))− φ′θ0(ηθ′(℘))
d
= φ′θ0(G0) (1.54)

for all curves ℘ in P and all scalars η ∈ R. Therefore, we immediately obtain from Lemma

1.3.1 that φ(θ̂n) is a regular estimator for φ(θ(P )) whenever φ′θ0 is linear, or equivalently,

whenever φ is Hadamard differentiable at θ0 = θ(P ). More generally, however, Lemma 1.3.1

implies φ(θ̂n) will often not be regular when φ is directionally, but not fully, Hadamard

differentiable at θ0. Condition (1.54) in fact closely resembles the requirement that φ′θ0 be
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G0-translation invariant (compare to (1.35)). In order to formalize this connection, we let⋃
℘ θ
′(℘) denote the closure under ‖ · ‖D of the collection of θ′(℘) generated by all curves

℘ ∈ P. The following Corollary shows that, under the requirement that the support of G0

be equal to
⋃
℘ θ
′(℘) (see Remark 1.3.9), φ(θ̂n) is indeed a regular estimator if and only if

φ′θ0 is G0-translation invariant.

Corollary 1.3.3. If Assumptions 1.2.1, 1.2.2, 1.2.3, 1.3.4, 1.3.5 hold, and the support of

G0 equals
⋃
℘ θ
′(℘), then φ(θ̂n) is a regular estimator if and only if φ′θ0 is G0-translation

invariant.

Perhaps the most interesting implication of Corollary 1.3.3 arises from combining it

with Theorem 1.3.1. Together, these results imply that the standard bootstrap is consistent

if and only if φ(θ̂n) is a regular estimator for φ(θ(P )). Thus, we can conclude from Corollary

1.3.3 that the failure of the bootstrap is an innate characteristic of irregular models. A

similar relationship between regularity and bootstrap consistency had been found by Beran

(1997), who showed that in finite dimensional likelihood models the parametric bootstrap

is consistent if and only if the estimator is regular.

Remark 1.3.9. Since θ̂n is a regular estimator, the Convolution Theorem implies that

G0
d
= ∆0 + ∆1 ,

where: (i) ∆0 is centered Gaussian, (ii) ∆0 and ∆1 are independent, and (iii) the support

of ∆0 is equal to
⋃
℘ θ
′(℘); see, for example, Theorem 3.11.2 in van der Vaart and Wellner

(1996). Hence, since the support of ∆0 is a vector space, we conclude that the requirement

that the support of G0 be equal to
⋃
℘ θ
′(℘) is satisfied whenever the support of ∆1 is

included in that of ∆0 – for example, whenever θ̂n is efficient.

1.3.4.1 Implications for Testing

As has been emphasized in the moment inequalities literature, the lack of regularity

of φ(θ̂n) can render pointwise (in P ) asymptotic approximations unreliable (Imbens and
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Manski, 2004). However, since in Examples 1.2.2, 1.2.3, and 1.2.5 our results encompass

procedures that are valid uniformly in P , we also know that irregularity of φ(θ̂n) does not

preclude our approach from remaining valid (Andrews and Soares, 2010; Linton et al., 2010;

Andrews and Shi, 2013). In what follows, we note that the aforementioned examples are

linked by the common structure of φ′θ0 being subadditive. More generally, we exploit Lemma

1.3.1 to show that whenever such property holds, the bootstrap procedure of Theorem 1.3.3

can control size locally to P along arbitrary submodels.

We consider hypothesis testing problems in which φ is scalar valued (E = R), and

we are concerned with evaluating whether P ∈ P satisfies

H0 : φ(θ(P )) ≤ 0 H1 : φ(θ(P )) > 0 . (1.55)

A natural test statistic for this problem is then
√
nφ(θ̂n), while Theorem 1.2.1 suggests

c1−α ≡ inf{c : P (φ′θ0(G0) ≤ c) ≥ 1− α}

is an appropriate unfeasible critical value for a 1 − α level test.9 For ĉ1−α the developed

boootstrap estimator for c1−α (see (1.43)), Theorem 1.2.1 and Corollary 1.3.2 then establish

the (pointwise in P ) validity of rejecting H0 whenever
√
nφ(θ̂n) > ĉ1−α.

In order to evaluate both the local size control and local power of the proposed test,

we assume φ(θ(P )) = 0 and consider curves ℘ in P that also belong to the set

H ≡ {℘ : (i) φ(θ(℘t)) ≤ 0 if t ≤ 0, and (ii) φ(θ(℘t)) > 0 if t > 0} .

Thus, a curve ℘ ∈ H is such that ℘t satisfies the null hypothesis whenever t ≤ 0, but

switches to satisfying the alternative hypothesis at all t > 0. As in Lemma 1.3.1, for a curve

℘ ∈ H and scalar η we let Pnn ≡
⊗n

i=1 ℘η/
√
n, and we denote the power at sample size n for

9Note that c1−α is the 1− α quantile of the asymptotic distribution of
√
nφ(θ̂n) when φ(θ(P )) = 0.
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the test that rejects whenever
√
nφ(θ̂n) > ĉ1−α by

πn(℘η/
√
n) ≡ Pnn (

√
nφ(θ̂n) > ĉ1−α) .

To conduct the local analysis, we further require the following Assumption.

Assumption 1.3.6. (i) E = R; (ii) The cdf of φ′θ0(G0) is continuous and strictly increasing

at c1−α; (iii) φ′θ0(h1 + h2) ≤ φ′θ0(h1) + φ′θ0(h2) for all h1, h2 ∈ D0.

Assumption 1.3.6(i) formalizes the requirement that φ be scalar valued. In turn, in

Assumption 1.3.6(ii) we impose that the cdf of φ′θ0(G0) be strictly increasing and continuous.

Strict monotonicity is required to establish the consistency of ĉ1−α, while continuity ensures

the test controls size at least pointwise in P . Assumption 1.3.6(iii) demands that φ′θ0 be

subadditive, which represents the key condition that ensures local size control. Since φ′θ0

is also positively homogenous of degree one, Assumption 1.3.6(iii) is in fact equivalent

to demanding that φ′θ0 be convex, which greatly simplifies verifying Assumption 1.3.6(ii)

when G0 is Gaussian; see Remark 1.3.11. We further note that Assumption 1.3.6 is trivially

satisfied when φ′θ0 is linear, which by Lemma 1.3.1 also implies φ(θ̂n) is regular. However, we

emphasize that Assumption 1.3.6 can also hold at points θ(P ) at which φ is not Hadamard

differentiable, as is easily verified in Examples 1.2.1-1.2.6.

The following Theorem derives the asymptotic limit of the power πn(℘η/
√
n).

Theorem 1.3.4. Let Assumptions 1.2.1, 1.2.2, 1.2.3, 1.3.1, 1.3.2, 1.3.3, 1.3.4, 1.3.5, and

1.3.6(i)-(ii) hold. It then follows that for any curve ℘ in H, and every η ∈ R we have

lim inf
n→∞

πn(℘η/
√
n) ≥ P (φ′θ0(G0 + ηθ′(℘)) > c1−α) . (1.56)

If in addition Assumption 1.3.6(iii) also holds, then we can conclude that for any η ≤ 0

lim sup
n→∞

πn(℘η/
√
n) ≤ α . (1.57)

The first claim of the Theorem derives a lower bound on the power against local
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alternatives, with (1.56) holding with equality whenever c1−α is a continuity point of the

cdf of φ′θ0(G0 + ηθ′(℘)). In turn, provided φ′θ0 is subadditive, the second claim of Theorem

1.3.4 establishes the ability of the test to locally control size along parametric submodels.

Heuristically, the role of subadditivity can be seen from (1.56) and the inequalities

P (φ′θ0(G0 + ηθ′(℘)) > c1−α) ≤ P (φ′θ0(G0) + φ′θ0(ηθ′(℘)) > c1−α) ≤ α ,

where the final inequality results from φ′θ0(ηθ′(℘)) ≤ 0 due to φ(θ(Pn)) − φ(θ(P )) ≤ 0.10

Thus, φ′θ0 being subadditive implies η = 0 is the “least favorable” point in the null, which

in turn delivers local size control as in (1.57). We note a similar logic can be employed to

evaluate confidence regions built using Theorems 1.2.1 and 1.3.3; see Remark 1.3.10.

Since the results of Theorem 1.3.4 are local to P in nature, their relevance is contin-

gent to them applying to all P ∈ P that are deemed possible distributions of the data. We

emphasize that the three key requirements in this regard are Assumptions 1.3.5(i), 1.3.6(ii),

and 1.3.6(iii) – i.e. that θ̂n be regular, the cdf of φ′θ0(G0) be continuous and strictly in-

creasing at c1−α, and that φ′θ0 be subadditive. We view Assumption 1.3.6(ii) as mainly a

technical requirement that can be dispensed with following insights in Andrews and Shi

(2013); see Remark 1.3.12. Regularity of θ̂n and subadditivity of φ′θ0 , however, are instru-

mental in establishing the validity of our proposed procedure. In certain applications, such

as in Examples 1.2.1, 1.2.2, 1.2.3, and 1.2.5, both these requirements are seen to be easily

satisfied for a large class of possible P . However, in other instances, such as in Example

1.2.4 applied to estimator in Kaido and Santos (2014), φ′θ0 is always subadditive, but the

regularity of θ̂n can fail to hold for an important class of P .

Remark 1.3.10. As usual, we can obtain confidence regions for φ(θ(P )) by test inverting

H0 : φ(θ(P )) = c0 H1 : φ(θ(P )) 6= c0 , (1.58)

for different c0 ∈ E. Defining φ̄ : Dφ ⊆ D→ R pointwise by φ̄(θ) ≡ ‖φ(θ)− c0‖E, it is then

10More precisely, we are exploiting that φ′θ0(ηθ′(℘)) = limn→∞
√
n{φ(θ(Pn))− φ(θ(P ))} ≤ 0.
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straightforward to see (1.58) can be expressed as in (1.55) with φ̄ in place of φ. In particular,

the chain rule implies φ̄′θ0(·) = ‖φ′θ0(·)‖E, and hence the subadditivity of ‖φ′θ0(·)‖E suffices

for establishing local size control.

Remark 1.3.11. Under Assumptions 1.2.1 and 1.3.6(iii), it follows that φ′θ0 : D0 → R is a

continuous convex functional. Therefore, if G0 is in addition Gaussian, then Theorem 11.1

in Davydov et al. (1998) implies that the cdf of φ′θ0(G0) is continuous and strictly increasing

at all points in the interior of its support (relative to R).

Remark 1.3.12. In certain applications, such as in Examples 1.2.3 and 1.2.5, Assumption

1.3.6(ii) may be violated at distributions P of interest. To address this problem, Andrews

and Shi (2013) propose employing the critical value ĉ1−α + δ for an arbitrarily small δ > 0.

It is then possible to show that, even if Assumption 1.3.6(ii) fails, we still have

lim inf
n→∞

P (ĉ1−α + δ ≥ c1−α) = 1 . (1.59)

Therefore, by contiguity it follows that the local size control established in (1.57) holds

without Assumption 1.3.6(ii) if we employ ĉ1−α + δ instead of ĉ1−α.

1.4 Conclusion

In this paper, we have developed a general asymptotic framework for conducting

inference in an important class of irregular models. In analogy with the Delta method,

we have shown crucial features of these problems can be understood simply in terms of

the asymptotic distribution G0 and the directional derivative φ′θ0 . The utility of these in-

sights were demonstrated by both unifying diverse existing results. We hope these are just

the first applications of this framework, which should be of use to theorists and empiri-

cal researchers alike in determining statistical properties such as asymptotic distributions,

bootstrap validity, and ability of tests to locally control size.
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1.6 Appendix

1.6.1 Proofs of Main Results

Proof of Proposition 1.2.1: One direction is clear since, by definition, φ being Hadamard

differentiable implies that its Hadamard directional derivative exists, equals the Hadamard

derivative of φ, and hence must be linear.

Conversely suppose the Hadamard directional derivative φ′θ : D0 → E exists and is

linear. Let {hn} and {tn} be sequences such that hn → h ∈ D0, tn → 0 and θ + tnhn ∈ Dφ

for all n. Then note that from any subsequence {tnk} we can extract a further subsequence

{tnkj }, such that either: (i) tnkj > 0 for all j or (ii) tnkj < 0 for all j. When (i) holds, φ

being Hadamard directional differentiable, then immediately yields that:

lim
j→∞

φ(θ + tnkjhnkj )− φ(θ)

tnkj
= φ′θ(h) . (1.60)

On the other hand, if (ii) holds, then h ∈ D0 and D0 being a subspace implies −h ∈ D0.

Therefore, by Hadamard directional differentiability of φ and −tnkj > 0 for all j:

lim
j→∞

φ(θ + tnkjhnkj )− φ(θ)

tnkj

= − lim
j→∞

φ(θ + (−tnkj )(−hnkj ))− φ(θ)

−tnkj
= −φ′θ(−h) = φ′θ(h) , (1.61)

where the final equality holds by the assumed linearity of φ′θ. Thus, results (1.60) and (1.61)
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imply that every subsequence {tnk , hnk} has a further subsequence along which

lim
j→∞

φ(θ + tnkjhnkj )− φ(θ)

tnkj
= φ′θ(h) . (1.62)

Since the subsequence {tnk , hnk} is arbitrary, it follows that (1.62) must hold along the

original sequence {tn, hn} and hence φ is Hadamard differentiable tangentially to D0.

Proof of Theorem 1.2.1: The proof closely follows the proof of Theorem 3.9.4 in van der

Vaart and Wellner (1996), and we include it here only for completeness. First, let Dn ≡

{h ∈ D : θ0 + h/rn ∈ Dφ} and define gn : Dn → E to be given by

gn(hn) ≡ rn{φ(θ0 +
hn
rn

)− φ(θ0)} (1.63)

for any hn ∈ Dn. Then note that for every sequence {hn} with hn ∈ Dn satisfying ‖hn −

h‖D = o(1) with h ∈ D0, it follows from Assumption 1.2.1(ii) that ‖gn(hn)−φ′θ0(h)‖E = o(1).

Therefore, the first claim follows by Theorem 1.11.1 in van der Vaart and Wellner (1996)

and G0 being tight implying that it is also separable by Lemma 1.3.2 in van der Vaart and

Wellner (1996).

For the second claim of the Theorem, we define fn : Dn × D→ E× E by:

fn(hn, h) = (gn(hn), φ′θ0(h)) , (1.64)

for any (hn, h) ∈ Dn ×D. It then follows by applying Theorem 1.11.1 in van der Vaart and

Wellner (1996) again, that as processes in E× E we have:

 rn{φ(θ̂n)− φ(θ0)}

φ′θ0(rn{θ̂n − θ0})

 L→

 φ′θ0(G0)

φ′θ0(G0)

 . (1.65)

In particular, result (1.65) and the continuous mapping theorem allow us to conclude:

rn{φ(θ̂n)− φ(θ0)} − φ′θ0(rn(θ̂n − θ0))
L→ 0 . (1.66)
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The second claim then follows from (1.66) and Lemma 1.10.2(iii) in van der Vaart and

Wellner (1996).

Proof of Corollary 1.2.1: Follows immediately from Theorem 1.2.1 applied with rn =

√
n, D = `∞(F) and D0 = C(F), and by noting that P (G0 ∈ C(F)) = 1 by Example 1.5.10

in van der Vaart and Wellner (1996).

Proof of Theorem 1.3.1: In these arguments we need to distinguish between outer

and inner expectations, and we therefore employ the notation E∗ and E∗ respectively. In

addition, for notational convenience we let Gn ≡ rn{θ̂n − θ0} and G∗n ≡ rn{θ̂∗n − θ̂n}. To

begin, note that Lemma 1.6.2 and the continuous mapping theorem imply that:

(rn{θ̂∗n − θ0}, rn{θ̂n − θ0})

= (rn{θ̂∗n − θ̂n}+ rn{θ̂n − θ0}, rn{θ̂n − θ0})
L→ (G1 +G2,G2) (1.67)

on D×D, where G1 and G2 are independent copies of G0. Further let Φ : Dφ ×Dφ → E be

given by Φ(θ1, θ2) = φ(θ1)−φ(θ2) for any θ1, θ2 ∈ Dφ×Dφ. Then observe that Assumption

1.2.1(ii) implies Φ is Hadamard directionally differentiable at (θ0, θ0) tangentially to D0×D0

with derivative Φ′θ0 : D0 × D0 → E given by

Φ′θ0(h1, h2) = φ′θ0(h1)− φ′θ0(h2) (1.68)

for any (h1, h2) ∈ D0 × D0. Thus, by Assumptions 1.2.2(ii) and 1.2.3(ii), Theorem 1.2.1,

result (1.67), and rn{θ̂∗n − θ0} = G∗n +Gn we can conclude that

rn{φ(θ̂∗n)− φ(θ̂n)} = rn{Φ(θ̂∗n, θ̂n)− Φ(θ0, θ0)}

= Φ′θ0(G∗n +Gn,Gn) + op(1) = φ′θ0(G∗n +Gn)− φ′θ0(Gn) + op(1) . (1.69)
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Further observe that for any ε > 0, it follows from the definition of BL1(E) that:

sup
h∈BL1(E)

|E∗[h(rn{φ(θ̂∗n)− φ(θ̂n)})− h(φ′θ0(G∗n +Gn)− φ′θ0(Gn))|{Xi}ni=1]|

≤ ε+ 2P ∗(‖rn{φ(θ̂∗n)− φ(θ̂n)} − {φ′θ0(G∗n +Gn)− φ′θ0(Gn)}‖E > ε|{Xi}ni=1) (1.70)

Moreover, Lemma 1.2.6 in van der Vaart and Wellner (1996) and result (1.69) also yield:

E∗[P ∗(‖rn{φ(θ̂∗n)− φ(θ̂n)} − {φ′θ0(G∗n +Gn)− φ′θ0(Gn)}‖E > ε|{Xi}ni=1)]

≤ P ∗(‖rn{φ(θ̂∗n)− φ(θ̂n)} − {φ′θ0(G∗n +Gn)− φ′θ0(Gn)}‖E > ε) = o(1) . (1.71)

Therefore, since ε > 0 was arbitrary, we obtain from results (1.70) and (1.71) that:

sup
h∈BL1(E)

|E∗[h(rn{φ(θ̂∗n)− φ(θ̂n)})|{Xi}ni=1]− E[h(φ′θ0(G0))]|

= sup
h∈BL1(E)

|E∗[h(φ′θ0(G∗n +Gn)− φ′θ0(Gn))|{Xi}ni=1]− E[h(φ′θ0(G0))]|+ op(1) (1.72)

Thus, in establishing the Theorem, it suffices to study the right hand side of (1.72).

First Claim: We aim to establish that if the bootstrap is consistent, then φ′θ0 : D0 → E must

be G0-translation invariant. Towards this end, note that Lemma 1.6.2 implies

(φ′θ0(G∗n +Gn)− φ′θ0(Gn),Gn)
L→ (φ′θ0(G1 +G2)− φ′θ0(G2),G2) (1.73)

on E × D by the continuous mapping theorem. Let f ∈ BL1(E) and g ∈ BL1(D) satisfy

f(h1) ≥ 0 and g(h2) ≥ 0 for any h1 ∈ E and h2 ∈ D. By (1.73) we then have:

lim
n→∞

E∗[f(φ′θ0(G∗n +Gn)− φ′θ0(Gn))g(Gn)] = E[f(φ′θ0(G1 +G2)− φ′θ0(G2))g(G2)] (1.74)

On the other hand, also note that if the bootstrap is consistent, then result (1.72) yields

sup
h∈BL1(E)

|E∗[h(φ′θ0(G∗n +Gn)− φ′θ0(Gn))|{Xi}ni=1]− E[h(φ′θ0(G0))]| = op(1) . (1.75)
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Moreover, since ‖g‖∞ ≤ 1 and ‖f‖∞ ≤ 1, it also follows that for any ε > 0 we have:

lim
n→∞

E∗[|E∗[f(φ′θ0(G∗n +Gn)− φ′θ0(Gn))|{Xi}ni=1]− E[f(φ′θ0(G0))]|g(Gn)]

≤ lim
n→∞

E∗[|E∗[f(φ′θ0(G∗n +Gn)− φ′θ0(Gn))|{Xi}ni=1]− E[f(φ′θ0(G0))]|]

≤ lim
n→∞

2P ∗(|E∗[f(φ′θ0(G∗n +Gn)− φ′θ0(Gn))|{Xi}ni=1]− E[f(φ′θ0(G0))]| > ε) + ε .

(1.76)

Thus, result (1.75), ε being arbitrary in (1.76), Lemma 1.6.5(v), g(h) ≥ 0 for all h ∈ D, and

Gn
L→ G2 by result (1.73) allow us to conclude that:

lim
n→∞

E∗[E∗[f(φ′θ0(G∗n +Gn)− φ′θ0(Gn))|{Xi}ni=1]g(Gn)]

= lim
n→∞

E∗[E[f(φ′θ0(G0))]g(Gn)] = E[f(φ′θ0(G0))]E[g(G2)] . (1.77)

In addition, we also note that by Lemma 1.2.6 in van der Vaart and Wellner (1996):

lim
n→∞

E∗[f(φ′θ0(G∗n +Gn)− φ′θ0(Gn))g(Gn)]

≤ lim
n→∞

E∗[E∗[f(φ′θ0(G∗n +Gn)− φ′θ0(Gn))|{Xi}ni=1]g(Gn)]

≤ lim
n→∞

E∗[f(φ′θ0(G∗n +Gn)− φ′θ0(Gn))g(Gn)] (1.78)

since Gn is a function of {Xi}ni=1 only and g(Gn) ≥ 0. However, by (1.73) and Lemma

1.3.8 in van der Vaart and Wellner (1996), (φ′θ0(G∗n +Gn)− φ′θ0(Gn),Gn) is asymptotically

measurable, and thus combining results (1.77) and (1.78) we can conclude:

lim
n→∞

E∗[f(φ′θ0(G∗n +Gn)− φ′θ0(Gn))g(Gn)] = E[f(φ′θ0(G0))]E[g(G2)] . (1.79)

Hence, comparing (1.74) and (1.79) with g ∈ BL1(D) given by g(a) = 1 for all a ∈ D,

E[f(φ′θ0(G0))]E[g(G2)] = E[f(φ′θ0(G1 +G2)− φ′θ0(G2))]E[g(G2)]

= E[f(φ′θ0(G1 +G2)− φ′θ0(G2))g(G2)] , (1.80)
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where the second equality follows again by (1.74) and (1.79). Since (1.80) must hold for

any f ∈ BL1(E) and g ∈ BL1(D) with f(h1) ≥ 0 and g(h2) ≥ 0 for any h1 ∈ E and h2 ∈ D,

Lemma 1.4.2 in van der Vaart and Wellner (1996) implies φ′θ0(G1 +G2)− φ′θ0(G2) must be

independent of G2, or equivalently, that φ′θ0 is G0-translation invariant.

Second Claim: To conclude, we show that if φ′θ0 : D0 → E is G0-translation invariant, then

the bootstrap is consistent. Fix ε > 0, and note that by Assumption 1.2.2, Lemma 1.6.1,

and Lemma 1.3.8 in van der Vaart and Wellner (1996), Gn and G∗n are asymptotically tight.

Therefore, there exists a compact set K ⊂ D such that for any δ > 0:

lim inf
n→∞

P∗(G∗n ∈ Kδ) ≥ 1− ε lim inf
n→∞

P∗(Gn ∈ Kδ) ≥ 1− ε , (1.81)

where Kδ ≡ {a ∈ D : infb∈K ‖a − b‖D < δ}. Furthermore, by the Portmanteau Theorem

we may assume without loss of generality that K is a subset of the support of G0 and that

0 ∈ K. Next, let K + K ≡ {a ∈ D : a = b + c for some b, c ∈ K} and note that the

compactness of K implies K +K is also compact. Thus, by Lemma 1.6.4 and continuity of

φ′θ0 : D→ E, there exist scalars δ0 > 0 and η0 > 0 such that:

sup
a,b∈(K+K)δ0 :‖a−b‖D<η0

‖φ′θ0(a)− φ′θ0(b)‖E < ε . (1.82)

Next, for each a ∈ K, let Bη0/2(a) ≡ {b ∈ D : ‖a− b‖D < η0/2}. Since {Bη0/2(a)}a∈K is an

open cover of K, there exists a finite collection {Bη0/2(aj)}Jj=1 also covering K. Therefore,

since for any b ∈ K
η0
2 there is a Πb ∈ K such that ‖b − Πb‖D < η0/2, it follows that for

every b ∈ K
η0
2 there is a 1 ≤ j ≤ J such that ‖b−aj‖D < η0. Setting δ1 ≡ min{δ0, η0}/2, we

obtain that if a ∈ Kδ1 and b ∈ Kδ1 , then: (i) a+b ∈ (K+K)δ0 since K
δ0
2 +K

δ0
2 ⊆ (K+K)δ0 ,

(ii) there is a 1 ≤ j ≤ J such that ‖b − aj‖D < η0, and (iii) (a + aj) ∈ (K + K)δ0 since

aj ∈ K and a ∈ K
δ0
2 . Therefore, since 0 ∈ K, we can conclude from (1.82) that for every
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b ∈ Kδ1 there exists a 1 ≤ j(b) ≤ J such that

sup
a∈Kδ1

‖{φ′θ0(a+ b)− φ′θ0(b)} − {φ′θ0(a+ aj(b))− φ′θ0(aj(b))}‖E

≤ sup
a,b∈(K+K)δ0 :‖a−b‖D<η0

2‖φ′θ0(a)− φ′θ0(b)‖E < 2ε . (1.83)

In particular, if we define the set ∆n ≡ {G∗n ∈ Kδ1 ,Gn ∈ Kδ1}, then (1.83) implies that for

every realization of Gn there is an aj independent of G∗n such that:

sup
f∈BL1(E)

|(f(φ′θ0(G∗n +Gn)− φ′θ0(Gn))− f(φ′θ0(G∗n + aj)− φ′θ0(aj)))1{∆n}| < 2ε . (1.84)

Letting ∆c
n denote the complement of ∆n, result (1.84) then allows us to conclude

sup
f∈BL1(E)

|E∗[f(φ′θ0(G∗n +Gn)− φ′θ0(Gn))|{Xi}ni=1]− E[f(φ′θ0(G0))]| ≤ 2P ∗(∆c
n|{Xi}ni=1)

+ max
1≤j≤J

sup
f∈BL1(E)

|E∗[f(φ′θ0(G∗n + aj)− φ′θ0(aj))|{Xi}ni=1]− E[f(φ′θ0(G0))]|+ 2ε (1.85)

since ‖f‖∞ ≤ 1 for all f ∈ BL1(E). However, by Assumptions 1.3.1(i)-(ii) and 1.3.2(ii), and

Theorem 10.8 in Kosorok (2008) it follows that for any 1 ≤ j ≤ J :

sup
f∈BL1(E)

|E∗[f(φ′θ0(G∗n + aj)− φ′θ0(aj))|{Xi}ni=1]− E[f(φ′θ0(G0 + aj)− φ′θ0(aj))]| = op(1) .

(1.86)

Thus, since K is a subset of the support of G0, Lemma 1.6.3, result (1.86), the continuous

mapping theorem, and J <∞ allow us to conclude that:

max
1≤j≤J

sup
f∈BL1(E)

|E∗[f(φ′θ0(G∗n + aj)− φ′θ0(aj))|{Xi}ni=1]− E[f(φ′θ0(G0))]| = op(1) . (1.87)

Moreover, for any ε ∈ (0, 1) we also have by Markov’s inequality, Lemma 1.2.6 in van der
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Vaart and Wellner (1996), 1{∆c
n} ≤ 1{G∗n /∈ Kδ1}+ 1{Gn /∈ Kδ1}, and (1.81) that:

lim sup
n→∞

P ∗(2P ∗(∆c
n|{Xi}ni=1) + 2ε > 6

√
ε) ≤ lim sup

n→∞
P ∗(P ∗(∆c

n|{Xi}ni=1) > 2
√
ε)

≤ 1

2
√
ε
× lim sup

n→∞
{P ∗(Gn /∈ Kδ1) + P ∗(G∗n /∈ Kδ1)} ≤

√
ε . (1.88)

Since ε > 0 was arbitrary, combining (1.72), (1.85), (1.87), and (1.88) imply (1.34) holds,

or equivalently, that φ′θ0 being G0-translation invariant implies bootstrap consistency.

Proof of Theorem 1.3.2: Let P denote the distribution of G0 on D0, and note that by

Assumption 1.2.2(ii) and Lemma 1.6.7 we may assume without loss of generality that the

support of G0 equals D and that D is separable. Further note that if G1 is an independent

copy of G0 and φ′θ0 : D→ E is linear, then we immediately obtain that:

φ′θ0(G1 +G0)− φ′θ0(G0) = φ′θ0(G1) , (1.89)

which is independent of G0, and hence φ′θ0 is trivially G0-translation invariant.

The opposite direction is more challenging and requires us to introduce additional

notation which closely follows Chapter 7 in Davydov et al. (1998). First, let D∗ denote the

dual space of D, and 〈d, d∗〉D = d∗(d) for any d ∈ D and d∗ ∈ D∗. Similarly denote the dual

space of E by E∗ and corresponding bilinear form by 〈·, ·〉E. Further let

D′P ≡
{
d′ : D→ R : d′ is linear, Borel-measurable, and

∫
D

(d′(d))2dP (d) <∞
}
, (1.90)

and with some abuse of notation also write d′(d) = 〈d′, d〉D for any d′ ∈ D′P and d ∈ D.

Finally, for each h ∈ D we let P h denote the law of G0 + h, write P h � P whenever P h is

absolutely continuous with respect to P , and define the set:

HP ≡ {h ∈ D : P rh � P for all r ∈ R} . (1.91)

To proceed, note that since D is separable, the Borel σ-algebra, the σ-algebra generated

by the weak topology, and the cylindrical σ-algebra all coincide (Ledoux and Talagrand,



www.manaraa.com

43

1991, p.38). Furthermore, by Theorem 7.1.7 in Bogachev (2007), P is Radon with respect

to the Borel σ-algebra, and hence also with respect to the cylindrical σ-algebra. Hence, by

Theorem 7.1 in Davydov et al. (1998), it follows that there exists a linear map I : HP → D′P

satisfying for every h ∈ HP :

dP h

dP
(d) = exp

{
〈d, Ih〉D −

1

2
σ2(h)

}
σ2(h) ≡

∫
D
〈d, Ih〉2DdP (d) . (1.92)

Next, fix an arbitrary e∗ ∈ E∗ and h ∈ HP . Then note that Lemma 1.6.3 and

Lemma 1.3.12 in van der Vaart and Wellner (1996) imply 〈e∗, φ′θ0(G0 + rh)−φ′θ0(rh)〉E and

〈e∗, φ′θ0(G0)〉E must be equal in distribution for all r ∈ R. In particular, their characteristic

functions must equal each other, and hence for all r ≥ 0 and t ∈ R:

E[exp{it〈e∗, φ′θ0(G0)〉E}] = E[exp{it{〈e∗, φ′θ0(G0 + rh)− φ′θ0(rh)〉E}}]

= exp{−itr〈e∗, φ′θ0(h)〉E}E[exp{it〈e∗, φ′θ0(G0 + rh)〉E}] , (1.93)

where in the second equality we have exploited that φ′θ0(rh) = rφ′θ0(h) due to φ′θ0 being pos-

itively homogenous of degree one. Setting C(t) ≡ E[exp{it〈e∗, φ′θ0(G0)〉E}] and exploiting

result (1.93) we can then obtain by direct calculation that for all t ∈ R

itC(t)× 〈e∗, φ′θ0(h)〉E = lim
r↓0

1

r
{E[exp{it〈e∗, φ′θ0(G0 + rh)〉E}]− C(t)}

= lim
r↓0

1

r

∫
D

{
exp

{
it〈e∗, φ′θ0(d)〉E + r〈d, Ih〉D −

r2

2
σ2(h)

}
− C(t)

}
dP (d) , (1.94)

where in the second equality we exploited result (1.92), linearity of I : HP → D′P and that

h ∈ HP implies rh ∈ HP for all r ∈ R. Furthermore, by the mean value theorem

sup
r∈(0,1]

1

r

∣∣∣ exp
{
it〈e∗, φ′θ0(d)〉E + r〈d, Ih〉D −

r2

2
σ2(h)

}
− exp{it〈e∗, φ′θ0(d)〉E}

∣∣∣
≤ sup

r∈(0,1]

∣∣∣ exp
{
it〈e∗, φ′θ0(d)〉E + r〈d, Ih〉D −

r2

2
σ2(h)

}
× {〈d, Ih〉D − rσ2(h)}

∣∣∣
≤ exp{|〈d, Ih〉D|} × {|〈d, Ih〉D|+ σ2(h)} , (1.95)
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where the final inequality follows from σ2(h) > 0 and | exp{it{e∗, φ′θ0(d)〉E}}| ≤ 1. More-

over, by Proposition 2.10.3 in Bogachev (1998) and Ih ∈ D′P , it follows that 〈G0, Ih〉D ∼

N(0, σ2(h)). Thus, we can obtain by direct calculation:

∫
D

exp{|〈d, Ih〉D|} × {|〈d, Ih〉D|+ σ2(h)}dP (d)

=

∫
R

{|u|+ σ2(h)}
σ(h)
√

2π
× exp

{
|u| − u2

2σ2(h)

}
du <∞ . (1.96)

Hence, results (1.95) and (1.96) justify the use of the dominated convergence theorem in

(1.94). Also note that t 7→ C(t) is the characteristic function of 〈e∗, φ′θ0(G0)〉E and hence it

is continuous. Thus, since C(0) = 1 there exists a t0 > 0 such that C(t0)t0 6= 0. For such

t0 we then finally conclude from the above results that

〈e∗, φ′θ0(h)〉E = −
iE[exp{it〈e∗, φ′θ0(G0)〉E}〈G0, Ih〉D]

t0C(t0)
. (1.97)

To conclude note that HP being a vector space (Davydov et al., 1998, p.38) and

I : D → D′P being linear imply together with result (1.97) that h 7→ 〈e∗, φ′θ0(h)〉E is linear

on HP . Moreover, note that h 7→ 〈e∗, φ′θ0(h)〉E is also continuous on D due to continuity of

φ′θ0 and having e∗ ∈ E∗. Hence, since HP is dense in D by Proposition 7.4(ii) in Davydov

et al. (1998) we can conclude that 〈e∗, φ′θ0(·)〉E : D→ R is linear and continuous. Since this

result holds for all e∗ ∈ E∗, Lemma A.2 in van der Vaart (1991c) implies φ′θ0 : D→ E must

be linear and continuous, which establishes the Theorem.

Proof of Corollary 1.3.1: By Theorems 1.3.1 and 1.3.2 the bootstrap is consistent if

and only if φ′θ0 is linear. However, since G0 is Gaussian and φ′θ0 : D0 → E is continuous,

Lemma 2.2.2 in Bogachev (1998) implies φ′θ0(G0) must be Gaussian (on E) whenever φ′θ0 is

linear, and hence the claim of the Corollary follows.

Proof of Theorem 1.3.3: Fix arbitrary ε > 0, η > 0 and for notational convenience let

G∗n ≡ rn{θ̂∗n − θ̂n}. By Assumption 1.2.2(ii) there is a compact set K0 ⊆ D0 such that

P (G0 /∈ K0) <
εη

2
. (1.98)
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Thus, by Lemma 1.6.1 and the Portmanteau Theorem, we conclude that for any δ > 0

lim sup
n→∞

P (G∗n /∈ Kδ
0) ≤ P (G0 /∈ Kδ

0) ≤ P (G0 /∈ K0) <
εη

2
. (1.99)

On the other hand, since K0 is compact, Assumption 1.3.3 yields that for some δ0 > 0:

lim sup
n→∞

P ( sup
h∈Kδ0

0

‖φ̂′n(h)− φ′θ0(h)‖E > ε)/ε < η/2 . (1.100)

Next, note that Lemma 1.2.2(iii) in van der Vaart and Wellner (1996), h ∈ BL1(E) being

bounded by one and satisfying |h(e1)− h(e2)| ≤ ‖e1 − e2‖E for all e1, e2 ∈ E, imply:

sup
f∈BL1(E)

|E[f(φ̂′n(G∗n))|{Xi}]− E[f(φ′θ0(G∗n))|{Xi}]|

≤ sup
f∈BL1(E)

E[|f(φ̂′n(G∗n))− f(φ′θ0(G∗n))||{Xi}]

≤ E[2× 1{G∗n /∈ K
δ0
0 }+ sup

f∈Kδ0
0

‖φ̂′n(f)− φ′θ0(f)‖E|{Xi}]

≤ 2P (G∗n /∈ K
δ0
0 |{Xi}ni=1) + sup

f∈Kδ0
0

‖φ̂′n(f)− φ′θ0(f)‖E , (1.101)

where in the final inequality we exploited Lemma 1.2.2(i) in van der Vaart and Wellner

(1996) and φ̂′n : D → E depending only on {Xi}ni=1. Furthermore, Markov’s inequality,

Lemma 1.2.7 in van der Vaart and Wellner (1996), and result (1.99) yield:

lim sup
n→∞

P (P (G∗n /∈ K
δ0
0 |{Xi}ni=1) > ε) ≤ lim sup

n→∞
P (G∗n /∈ K

δ0
0 ) < η . (1.102)

Next, also note that Assumption 1.3.1(i) and Theorem 10.8 in Kosorok (2008) imply that:

sup
f∈BL1(E)

|E[f(φ′θ0(G∗n))|{Xi}ni=1]− E[f(φ′θ0(G0))]| = op(1) . (1.103)

Thus, by combining results (1.100), (1.101), (1.102) and (1.103) we can finally conclude:

lim sup
n→∞

P ( sup
f∈BL1(E)

|E[f(φ̂′n(G∗n))|{Xi}ni=1]− E[f(φ′θ0(G0))]| > 3ε) < 3η . (1.104)
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Since ε and η were arbitrary, the claim of the Theorem then follows from (1.104).

Proof of Corollary 1.3.2: Let F denote the cdf of φ′θ0(G0), and similarly define:

F̂n(c) ≡ P (φ̂′n(rn{θ̂∗n − θ̂n}) ≤ c|{Xi}ni=1) . (1.105)

Next, observe that Theorem 1.3.3 and Lemma 10.11 in Kosorok (2008) imply that:

F̂n(c) = F (c) + op(1) , (1.106)

for all c ∈ R that are continuity points of F . Fix ε > 0, and note that since F is strictly

increasing at c1−α and the set of continuity of points of F is dense in R, it follows that there

exist points c1, c2 ∈ R such that: (i) c1 < c1−α < c2, (ii) |c1− c1−α| < ε and |c2− c1−α| < ε,

(iii) c1 and c2 are continuity points of F , and (iv) F (c1) + δ < 1− α < F (c2)− δ for some

δ > 0. We can then conclude that:

lim sup
n→∞

P (|ĉ1−α − c1−α| > ε)

≤ lim sup
n→∞

{P (|F̂n(c1)− F (c1)| > δ) + P (|F̂n(c2)− F (c2)| > δ)} = 0 , (1.107)

due to (1.106). Since ε > 0 was arbitrary, the Corollary then follows.

Proof of Lemma 1.3.1: First note that by Assumption 1.3.5(ii) we can conclude:

lim
n→∞

‖
√
n{θ(Pn)− θ(P )} − ηθ′(℘)‖D = 0 . (1.108)

Similarly, letting tn ≡ n−
1
2 , hn ≡

√
n{θ(Pn)−θ(P )} we note θ(P )+tnhn = θ(Pn) ∈ Dφ, and

by (1.108) that ‖hn − h‖D = o(1) as n→∞, for h ≡ ηθ′(℘). Further note that ηθ′(℘) ∈ D0

by Assumption 1.3.5(ii) since ηθ′(℘) = θ′(℘̃) for the curve t 7→ ℘̃t ≡ t 7→ ℘ηt. Thus, from
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Assumption 1.2.1(ii) and Definition 1.2.1 we can conclude that

lim
n→∞

‖
√
n{φ(θ(Pn))− φ(θ(P ))} − φ′θ0(ηθ′(℘))‖E

= lim
n→∞

‖φ(θ(P ) + tnhn)− φ(θ(P ))

tn
− φ′θ0(h)‖E = 0 . (1.109)

Next, let Pn ≡
⊗n

i=1 P and Pnn ≡
⊗n

i=1 Pn. By Theorem 1.2.1 we then have that:

√
n{φ(θ̂n)− φ(θ(P ))} = φ′θ0(

√
n{θ̂n − θ(P )}) + op(1) (1.110)

under Pn. However, by Theorem 12.2.3 and Corollary 12.3.1 in Lehmann and Romano

(2005), Pnn and Pn are mutually contiguous. Hence, from (1.109) and (1.110) we obtain

√
n{φ(θ̂n)− φ(θ(Pn))} =

√
n{φ(θ̂n)− φ(θ(P ))} −

√
n{φ(θ(Pn))− φ(θ(P ))}

= φ′θ0(
√
n{θ̂n − θ(P )})− φ′θ0(ηθ′(℘)) + op(1) . (1.111)

under Pnn . Furthermore, by regularity of θ̂n and result (1.108) we also have that:

√
n{θ̂n − θ(P )} =

√
n{θ̂n − θ(Pn)}+

√
n{θ(Pn)− θ(P )} Ln→ G0 + ηθ′(℘) . (1.112)

Thus, we may conclude by (1.111), (1.112) and the continuous mapping theorem.

Proof of Corollary 1.3.3: Let DL denote the support of G0, and note that if ℘̃t = P

for all t, then ℘̃ is trivially a curve in P with ℘̃′ = 0 ∈ D, and hence 0 ∈
⋃
℘ θ
′(℘) = DL. We

first show that G0-translation invariance implies φ(θ̂n) is regular. To this end, note 0 ∈ DL,

Lemma 1.6.3, and
⋃
℘ θ
′(℘) = DL implies for any η ∈ R and curve ℘ in P:

E[h(φ′θ0(G0 + ηθ′(℘))− φ′θ0(ηθ′(℘)))] = E[h(φ′θ0(G0))] (1.113)

for all bounded and continuous h : E → R. Letting “
d
= ” denote equality in distribution,
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we then conclude from (1.113) and Lemma 1.3.12 in van der Vaart and Wellner (1996):

φ′θ0(G0 + ηθ′(℘))− φ′θ0(ηθ′(℘))
d
= φ′θ0(G0) (1.114)

for any η ∈ R and curve ℘ in P. Thus, result (1.114) and Lemma 1.3.1 imply φ(θ̂n) is a

regular estimator for φ(θ0(P )) establishing the first direction of the Corollary.

For the opposite direction, suppose now that φ(θ̂n) is a regular estimator of φ(θ(P )).

For notational simplicity, further let Φ : D× D→ E be given by:

Φ(h0, h1) ≡ φ′θ0(h0 + h1)− φ′θ0(h0) . (1.115)

Next, fix arbitrary continuous and bounded functions f : E → R and g : D → R, and let

G1 be an independent copy of G0. Then note that: (i) Continuity of φ′θ0 : D → E implies

h0 7→ Φ(h0, h1) is continuous for any h1 ∈ D, and (ii)
⋃
℘ θ
′(℘) being dense in DL implies

that for any h0 ∈ DL there is a sequence h0,n ∈
⋃
℘ θ
′(℘) such that ‖h0 − h0,n‖D = o(1) as

n→∞. Therefore, the dominated convergence theorem yields

E[f(Φ(h0,G1))] = lim
n→∞

E[f(Φ(h0,n,G1))] = E[f(Φ(0,G1))] = E[f(φ′θ0(G1))] , (1.116)

where the second equality follows from 0 ∈
⋃
℘ θ
′(℘) together with Lemma 1.3.1 and φ(θ̂n)

being regular implying the distribution of Φ(h0,G1) is constant in h0 ∈
⋃
℘ θ
′(℘), while the

last equality results from (1.115) and φ′θ0(0) = 0. Hence, Fubini’s theorem, result (1.116)

and G0 and G1 being independent allow us to conclude that:

E[f(φ′θ0(G0 +G1)− φ′θ0(G0))g(G0)]

=

∫
DL
E[f(Φ(h0,G1))]g(h0)dP (h0) = E[f(φ′θ0(G1))]E[g(G0)] (1.117)

where with some abuse of notation we let P also denote the distribution of G0 on D. Since

(1.117) holds for any bounded and continuous f : E → R and g : D → R, Lemma 1.4.2 in

van der Vaart and Wellner (1996) implies φ′θ0(G0 +G1)− φ′θ0(G0) and G1 are independent,
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or equivalently, that φ′θ0 is G0-translation invariant.

Proof of Theorem 1.3.4: Recall that we have set Pn ≡ ℘η/
√
n, Pnn ≡

⊗n
i=1 Pn, and

similarly define Pn ≡
⊗n

i=1 P . Then note that by Theorem 12.2.3 and Corollary 12.3.1 in

Lehmann and Romano (2005), Pnn and Pn are mutually contiguous. Therefore, since by

Corollary 1.3.2 ĉ1−α
p→ c1−α under Pn, it follows that we also have:

ĉ1−α = c1−α + op(1) under Pnn . (1.118)

Moreover, since φ(θ(P )) = 0, we also obtain from result (1.110) that under Pnn we have:

√
nφ(θ̂n) =

√
n{φ(θ̂n)− φ(θ(P ))}

= φ′θ0(
√
n{θ̂n − θ(P )}) + op(1)

Ln→ φ′θ0(G0 + ηθ′(℘)) , (1.119)

where the final result holds for Ln denoting law under Pnn by result (1.112) and the contin-

uous mapping theorem. Thus, (1.56) holds by (1.119) and the Portmanteau Theorem.

In order to establish (1.57) holds whenever η ≤ 0, first note that (1.109) implies

0 ≥ lim
n→∞

√
n{φ(θ(Pn))− φ(θ(P ))} = φ′θ0(ηθ′(℘)) , (1.120)

where we have exploited that φ(θ(P )) = 0 and φ(θ(Pn)) ≤ 0 for all η ≤ 0. Therefore, result

(1.118) together with the second equality in (1.119) allow us to conclude

lim sup
n→∞

Pnn (
√
nφ(θ̂n) > ĉ1−α)

≤ lim sup
n→∞

Pnn (φ′θ0(
√
n{θ̂n − θ(P )}) ≥ c1−α)

≤ lim sup
n→∞

Pnn (φ′θ0(
√
n{θ̂n − θ(Pn)}) + φ′θ0(

√
n{θ(Pn)− θ(P )}) ≥ c1−α)

≤ lim sup
n→∞

Pnn (φ′θ0(
√
n{θ̂n − θ(Pn)}) ≥ c1−α)

= P (φ′θ0(G0) ≥ c1−α) , (1.121)

where the second inequality follows from subadditivity of φ′θ0 , the third inequality is implied
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by (1.120), and the final result follows from
√
n{θ̂n− θ(Pn)} Ln→ G0 by Assumption 1.3.5(i),

the continuous mapping theorem, and c1−α being a continuity point of the cdf of φ′θ0(G0).

Since P (φ′θ0(G0) ≥ c1−α) = α by construction, result (1.57) follows.

Lemma 1.6.1. If Assumptions 1.2.1(i), 1.2.2(ii), 1.3.1, 1.3.2(i) hold, then rn{θ̂∗n− θ̂n}
L→

G0.

Proof: In these arguments we need to distinguish between outer and inner expectations,

and we therefore employ the notation E∗ and E∗ respectively. For notational simplicity

also let G∗n ≡ rn{θ̂∗n − θ̂n}. First, let f ∈ BL1(D), and then note that by Lemma 1.6.5(i)

and Lemma 1.2.6 in van der Vaart and Wellner (1996) we have that:

E∗[f(G∗n)]− E[f(G0)] ≥ E∗[E∗[f(G∗n)|{Xi}ni=1]]− E[f(G0)]

≥ −E∗[|E∗[f(G∗n)|{Xi}ni=1]− E[f(G0)]|]

≥ −E∗[ sup
f∈BL1(D)

|E∗[f(G∗n)|{Xi}ni=1]− E[f(G0)]|] . (1.122)

Similarly, applying Lemma 1.2.6 in van der Vaart and Wellner (1996) once again together

with Lemma 1.6.5(ii), and exploiting that f ∈ BL1(D) we can conclude that:

E∗[f(G∗n)]− E[f(G0)] ≤ E∗[E∗[f(G∗n)|{Xi}ni=1]]− E[f(G0)]

≤ E∗[|E∗[f(G∗n)|{Xi}ni=1]− E[f(G0)]|]

≤ E∗[ sup
f∈BL1(D)

|E∗[f(G∗n)|{Xi}ni=1]− E[f(G0)]|] . (1.123)

However, since ‖f‖∞ ≤ 1 for all f ∈ BL1(D), it also follows that for any η > 0 we have:

E∗[ sup
f∈BL1(D)

|E∗[f(G∗n)|{Xi}ni=1]− E[f(G0)]|]

≤ 2P ∗( sup
f∈BL1(D)

|E∗[f(G∗n)|{Xi}ni=1]− E[f(G0)]| > η) + η . (1.124)

Moreover, by Assumption 1.3.2(i), E∗[f(G∗n)] = E∗[f(G∗n)] + o(1). Thus, Assumption
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1.3.1(ii), η being arbitrary, and results (1.122) and (1.123) together imply that:

lim
n→∞

E∗[f(G∗n)] = E[f(G0)] (1.125)

for any f ∈ BL1(D). Further note that since G0 is tight by Assumption 1.2.2(ii) and D is

a Banach space by Assumption 1.2.1(i), Lemma 1.3.2 in van der Vaart and Wellner (1996)

implies G0 is separable. Therefore, the claim of the Lemma follows from (1.125), Theorem

1.12.2 and Addendum 1.12.3 in van der Vaart and Wellner (1996).

Lemma 1.6.2. Let Assumptions 1.2.1(i), 1.2.2, 1.3.1 and 1.3.2(i) hold, and G1,G2 ∈ D

be independent random variables with the same law as G0. Then, it follows that on D×D:

(rn{θ̂n − θ0}, rn{θ̂∗n − θ̂n})
L→ (G1,G2) . (1.126)

Proof: In these arguments we need to distinguish between outer and inner expectations,

and we therefore employ the notation E∗ and E∗ respectively. For notational convenience we

also let Gn ≡ rn{θ̂n− θ0} and G∗n ≡ rn{θ̂∗n− θ̂n}. Then, note that Assumptions 1.2.2(i)-(ii),

Lemma 1.6.1, and Lemma 1.3.8 in van der Vaart and Wellner (1996) imply that both Gn and

G∗n are asymptotically measurable, and asymptotically tight in D. Therefore, by Lemma

1.4.3 in van der Vaart and Wellner (1996) (Gn,G∗n) is asymptotically tight in D × D and

asymptotically measurable as well. Thus, by Prohorov’s theorem (Theorem 1.3.9 in van der

Vaart and Wellner (1996)), each subsequence {(Gnk ,G∗nk)} has an additional subsequence

{(Gnkj ,G
∗
nkj

)} such that:

(Gnkj ,G
∗
nkj

)
L→ (Z1,Z2) (1.127)

for a tight Borel random variable Z ≡ (Z1,Z2) ∈ D × D. Since the sequence {(Gnk ,G∗nk)}

was arbitrary, the Lemma follows if show the law of Z equals that of (G1,G2).

Towards this end, let f1, f2 ∈ BL1(D) satisfy f1(h) ≥ 0 and f2(h) ≥ 0 for all h ∈ D.

Then note that by result (1.127) it follows that:

lim
j→∞

E∗[f1(Gnkj )f2(G∗nkj )] = E[f1(Z1)f2(Z2)] . (1.128)
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However, f1, f2 ∈ BL1(D) satisfying f1(h) ≥ 0 and f2(h) ≥ 0 for all h ∈ D, Lemma 1.2.6 in

van der Vaart and Wellner (1996), and Lemma 1.6.5(iii) imply that:

lim
j→∞

E∗[f1(Gnkj )f2(G∗nkj )]− E
∗[f1(Gnkj )E[f2(G0)]]

≥ lim
j→∞

E∗[f1(Gnkj )E
∗[f2(G∗nkj )|{Xi}ni=1]]− E∗[f1(Gnkj )E[f2(G0)]]

≥ − lim
j→∞

E∗[f1(Gnkj )|E
∗[f2(G∗nkj )|{Xi}ni=1]− E[f2(G0)]|]

≥ − lim
j→∞

E∗[ sup
f∈BL1(D)

|E∗[f(G∗nkj )|{Xi}ni=1]− E[f(G0)]|] , (1.129)

where in the final inequality we exploited that f1 ∈ BL1(D). Similarly, Lemma 1.2.6 in

van der Vaart and Wellner (1996), Lemma 1.6.5(iv), and f1, f2 ∈ BL1(D) also imply that:

lim
j→∞

E∗[f1(Gnkj )f2(G∗nkj )]− E∗[f1(Gnkj )E[f2(G0)]]

≤ lim
j→∞

E∗[f1(Gnkj )E
∗[f2(G∗nkj )|{Xi}ni=1]]− E∗[f1(Gnkj )E[f2(G0)]]

≤ lim
j→∞

E∗[f1(Gnkj )|E
∗[f2(G∗nkj )|{Xi}ni=1]− E[f2(G0)]|]

≤ lim
j→∞

E∗[ sup
f∈BL1(D)

|E∗[f(G∗nkj )|{Xi}ni=1]− E[f(G0)]|] . (1.130)

Thus, combining result (1.124) together with (1.129) and (1.130), and the fact that (Gn,G∗n)

and Gn are asymptotically measurable, we can conclude that:

lim
j→∞

E∗[f1(Gnkj )f2(G∗nkj )] = lim
j→∞

E∗[f1(Gnkj )E[f2(G0)]]

= E[f1(G0)]E[f2(G0)] , (1.131)

where the final result follows from Gn
L→ G0 in D. Hence, (1.128) and (1.131) imply

E[f1(Z1)f2(Z2)] = E[f1(G0)]E[f2(G0)] (1.132)

for all f1, f2 ∈ BL1(D) satisfying f1(h) ≥ 0 and f2(h) ≥ 0 for all h ∈ D. Since Z is

tight on D × D it is also separable by Lemma 1.3.2 in van der Vaart and Wellner (1996)
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and Assumption 1.2.1(i), and hence result (1.132) and Lemma 1.4.2 in van der Vaart and

Wellner (1996) imply the law of Z equals that of (G1,G2). In view of (1.127), the claim of

the Lemma then follows.

Lemma 1.6.3. Let Assumptions 1.2.1, 1.2.2(ii), and 1.2.3 hold, DL denote the support of

G0 and suppose 0 ∈ DL. If φ′θ0 : D → E is G0-translation invariant, then for any a0 ∈ DL

and bounded continuous function f : E→ R, it follows that:

E[f(φ′θ0(G0))] = E[f(φ′θ0(G0 + a0)− φ′θ0(a0))] . (1.133)

Proof: For any a0 ∈ D and sequence {an} ∈ D with ‖a0 − an‖D = o(1), continuity of φ′θ0

and f , f being bounded, and the dominated convergence theorem imply:

lim
n→∞

E[f(φ′θ0(G0 + an)− φ′θ0(an))] = E[f(φ′θ0(G0 + a0)− φ′θ0(a0))] . (1.134)

Next, let Bε(a0) ≡ {a ∈ D : ‖a0 − a‖D < ε}, and observe that result (1.134) implies:

E[f(φ′θ0(G0 + a0)− φ′θ0(a0))] = lim inf
ε↓0

inf
a∈Bε(a0)

E[f(φ′θ0(G0 + a)− φ′θ0(a))]

≤ lim sup
ε↓0

sup
a∈Bε(a0)

E[f(φ′θ0(G0 + a)− φ′θ0(a))] = E[f(φ′θ0(G0 + a0)− φ′θ0(a0))] . (1.135)

Letting L denote the law of G0, and for G1 and G2 independent copies of G0, we have:

inf
a∈Bε(a0)

E[f(φ′θ0(G1 + a)− φ′θ0(a))]P (G2 ∈ Bε(a0))

≤
∫
Bε(a0)

∫
DL
f(φ′θ0(z1 + z2)− φ′θ0(z2))dL(z1)dL(z2)

≤ sup
a∈Bε(a0)

E[f(φ′θ0(G1 + a)− φ′θ0(a))]P (G2 ∈ Bε(a0)) . (1.136)
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In particular, if a0 ∈ DL, then P (G2 ∈ Bε(a0)) > 0 for all ε > 0, and thus we conclude:

E[f(φ′θ0(G0 + a0)− φ′θ0(a0))] = lim
ε↓0

E[f(φ′θ0(G1 +G2)− φ′θ0(G2))|G2 ∈ Bε(a0)]

= lim
ε↓0

E[f(φ′θ0(G1 +G2)− φ′θ0(G2))|G2 ∈ Bε(0)] = E[f(φ′θ0(G0))] , (1.137)

where the first equality follows from (1.135) and (1.136), the second by φ′θ0 being G0-

translation invariant and 0 ∈ DL, while the final equality follows by results (1.135), (1.136),

and φ′θ0(0) = 0 due to φ′θ0 being homogenous of degree one.

Lemma 1.6.4. Let Assumption 1.2.1(i) hold, ψ : D → E be continuous, and K ⊂ D be

compact. It then follows that for every ε > 0 there exist δ > 0, η > 0 such that:

sup
(a,b)∈Kδ×Kδ:‖a−b‖D<η

‖ψ(a)− ψ(b)‖E < ε . (1.138)

Proof: Fix ε > 0 and note that since ψ : D→ E is continuous, it follows that for every a ∈

D there exists a ζa such that ‖ψ(a)−ψ(b)‖E < ε/2 for all b ∈ D with ‖a− b‖D < ζa. Letting

Bζa/4(a) ≡ {b ∈ D : ‖a − b‖D < ζa/4}, then observe that {Bζa/4(a)}a∈K forms an open

cover of K and hence, by compactness of K, there exists a finite subcover {Bζaj /4(aj)}Jj=1

for some J <∞. To establish the Lemma, we then let

η ≡ min
1≤j≤J

ζaj
4

δ ≡ min
1≤j≤J

ζaj
4

. (1.139)

For any a ∈ Kδ, there then exists a Πa ∈ K such that ‖a − Πa‖D < δ, and since

{Bζaj /4(aj)}Jj=1 covers K, there also is a j̄ such that Πa ∈ Bζaj̄/4(aj̄). Thus, we have

‖a− aj̄‖D ≤ ‖a−Πa‖D + ‖Πa− aj̄‖D < δ +
ζaj̄
4
≤
ζaj̄
2

, (1.140)

due to the choice of δ in (1.139). Moreover, if b ∈ D satisfies ‖a− b‖D < η, then:

‖b− aj̄‖D ≤ ‖a− b‖D + ‖a− aj̄‖D < η +
ζaj̄
2
≤ ζaj̄ , (1.141)
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by the choice of η in (1.139). We conclude from (1.140), (1.141) that a, b ∈ Bζaj̄ (aj̄), and

‖ψ(a)− ψ(b)‖E ≤ ‖ψ(a)− ψ(aj̄)‖E + ‖ψ(b)− ψ(aj̄)‖E <
ε

2
+
ε

2
= ε (1.142)

by our choice of ζaj̄ . Thus, the Lemma follows from result (1.142).

Lemma 1.6.5. Let (Ω,F , P ) be a probability space, c ∈ R+ and U : Ω→ R and V : Ω→ R

be arbitrary maps satisfying U(ω) ≥ 0 and V (ω) ≥ 0 for all ω ∈ Ω. If E∗ and E∗ denote

outer and inner expectations respectively, then it follows that:

(i) E∗[U ]− c ≥ −E∗[|U − c|].

(ii) E∗[U ]− c ≤ E∗[|U − c|].

(iii) E∗[UV ]− E∗[Uc] ≥ −E∗[U |V − c|] whenever min{E∗[UV ], E∗[Uc]} <∞.

(iv) E∗[UV ]− E∗[Uc] ≤ E∗[U |V − c|] whenever min{E∗[UV ], E∗[Uc]} <∞.

(v) |E∗[UV ]− E∗[Uc]| ≤ E∗[U |V − c|] whenever min{E∗[UV ], E∗[Uc]} <∞.

Proof: The arguments are simple and tedious, but unfortunately necessary to address the

possible nonlinearity of inner and outer expectations. Throughout, for a map T : Ω → R,

we let T ∗ and T∗ denote the minimal measurable majorant and the maximal measurable

minorant of T respectively. We will also exploit the fact that:

E∗[T ] = −E∗[−T ] , (1.143)

and that E∗[T ] = E[T ∗] whenever E[T ∗] exists, which in the context of this Lemma is

always satisfied since all variables are positive.

To establish the first claim of the Lemma, note that Lemma 1.2.2(i) in van der Vaart

and Wellner (1996) implies U∗ − c = (U − c)∗. Therefore, (1.143) and E∗ ≤ E∗ yield:

E∗[U ]− c = E[U∗ − c] = E[(U − c)∗] = E∗[U − c]

≥ E∗[−|U − c|] = −E∗[|U − c|] ≥ −E∗[|U − c|] . (1.144)

Similarly, for the second claim of the Lemma, exploit that E∗ ≤ E∗, and once again employ
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Lemma 1.2.2(i) in van der Vaart and Wellner (1996) to conclude that:

E∗[U ]− c ≤ E∗[U ]− c = E[U∗ − c] = E[(U − c)∗] ≤ E∗[|U − c|] . (1.145)

For the third claim, note that Lemma 1.2.2(iii) in van der Vaart and Wellner (1996) implies

|(UV )∗ − (Uc)∗| ≤ |UV − Uc|∗. Thus, since |U(V − c)| = U |V − c| as a result of U(ω) ≥ 0

for all ω ∈ Ω, we obtain from relationship (1.143) and E∗ ≤ E∗ that:

E∗[UV ]− E∗[Uc] = E[(UV )∗ − (Uc)∗] ≥ E[−|(UV )∗ − (Uc)∗|]

≥ E[−|UV − Uc|∗] = −E∗[U |V − c|] ≥ −E∗[U |V − c|] . (1.146)

Similarly, for the fourth claim of the Lemma, employ (1.143), that |(−Uc)∗ − (−UV )∗| ≤

|(−Uc) − (−UV )|∗ by Lemma 1.2.2(iii) in van der Vaart and Wellner (1996), and that

|UV − Uc| = U |V − c| due to U(ω) ≥ 0 for all ω ∈ Ω to obtain that:

E∗[UV ]− E∗[Uc] = E[(−Uc)∗ − (−UV )∗] ≤ E[|(−Uc)∗ − (−UV )∗|]

≤ E[|(−Uc)− (−UV )|∗] = E∗[U |V − c|] . (1.147)

Finally, for the fifth claim of the Lemma, note the same arguments as in (1.147) yield

E∗[UV ]− E∗[Uc] = E[(Uc)∗ − (UV )∗] ≤ E[|(Uc)∗ − (UV )∗|]

≤ E[|(Uc)− (UV )|∗] = E∗[U |V − c|] . (1.148)

Thus, part (v) of the Lemma follows from part (iii) and (1.148).

Lemma 1.6.6. Let Assumptions 1.2.1, 1.2.3(i) hold, and suppose that for some κ > 0 and

C0 <∞ we have ‖φ̂′n(h1)− φ̂′n(h2)‖E ≤ C0‖h1−h2‖κD for all h1, h2 ∈ D outer almost surely.

Then, Assumption 1.3.3 holds provided that for all h ∈ D0 we have:

‖φ̂′n(h)− φ′θ0(h)‖E = op(1) . (1.149)
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Proof: Fix ε > 0, let K0 ⊆ D0 be compact, and for any h ∈ D let Π : D → K0 satisfy

‖h − Πh‖D = infa∈K0 ‖h − a‖D – here attainment is guaranteed by compactness. Since

φ′θ0 : D→ E is continuous, Lemma 1.6.4 implies there exists a δ1 > 0 such that:

sup
h∈Kδ1

0

‖φ′θ0(h)− φ′θ0(Πh)‖E < ε . (1.150)

Next, set δ2 < (ε/C0)1/κ and note that by hypothesis we have outer almost surely that:

sup
h∈Kδ2

0

‖φ̂′n(h)− φ̂′n(Πh)‖E ≤ sup
h∈Kδ2

0

C0‖h−Πh‖κE ≤ C0δ
κ
2 < ε . (1.151)

Defining δ3 ≡ min{δ1, δ2}, exploiting (1.150), (1.151), and Πh ∈ K0 we then conclude:

sup
h∈Kδ3

0

‖φ̂′n(h)− φ′θ0(h)‖E

≤ sup
h∈Kδ3

0

{‖φ̂′n(h)− φ̂′n(Πh)‖E + ‖φ′θ0(h)− φ′θ0(Πh)‖E + ‖φ̂′n(Πh)− φ′θ0(Πh)‖E}

≤ sup
h∈K0

‖φ̂′n(h)− φ′θ0(h)‖E + 2ε (1.152)

outer almost surely. Thus, since Kδ
0 ⊆ K

δ3
0 for all δ ≤ δ3 we obtain from (1.152) that:

lim
δ↓0

lim sup
n→∞

P ( sup
h∈Kδ

0

‖φ̂′n(h)− φ′θ0(h)‖E > 5ε)

≤ lim sup
n→∞

P ( sup
h∈K0

‖φ̂′n(h)− φ′θ0(h)‖E > 3ε) . (1.153)

Next note that since K0 is compact, φ′θ0 is uniformly continuous on K0, and thus we can

find a finite collection {hj}Jj=1 with J <∞ such that hj ∈ K0 for all j and:

sup
h∈K0

min
1≤j≤J

max{C0‖h− hj‖κD, ‖φ′θ0(h)− φ′θ0(hj)‖E} < ε . (1.154)
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In particular, since ‖φ̂′θ0(h)− φ̂′θ0(hj)‖E ≤ C0‖h− hj‖κD, we conclude from (1.154) that:

sup
h∈K0

‖φ̂′θ0(h)− φ′θ0(h)‖E ≤ max
1≤j≤J

‖φ̂′θ0(hj)− φ′θ0(hj)‖E + 2ε . (1.155)

Thus, we can conclude from (1.155) and φ̂′θ0 satisfying (1.149) for any h ∈ D0 that:

lim sup
n→∞

P ( sup
h∈K0

‖φ̂′n(h)− φ′θ0(h)‖E > 3ε)

≤ lim sup
n→∞

P ( max
1≤j≤J

‖φ̂′n(hj)− φ′θ0(hj)‖E > ε) = 0 . (1.156)

Since ε and K0 were arbitrary, the Lemma follows from (1.153) and (1.154).

Lemma 1.6.7. Let Assumptions 1.2.1, 1.2.2(ii) hold, and G0 be a centered Gaussian mea-

sure. Then, it follows that the support of G0 is a separable Banach space under ‖ · ‖D.

Proof: Let τ and τw denote the strong and weak topologies on D respectively, and B(τ)

and B(τw) the corresponding σ-algebras generated by them. Further let P denote the

distribution of G0 on D, and note that by Assumption 1.2.2(ii) and Lemma 1.3.2 in van der

Vaart and Wellner (1996), P is τ -separable. Let S(τ) denote the support of P under τ ,

formally the smallest τ -closed set S(τ) ⊆ D such that P (S(τ)) = 1, and let

P ≡ span{S(τ)}τ (1.157)

denote the τ -closed linear span of S(τ). Since P is separable and S(τ) ⊆ D, it follows that

P is a separable Banach space under ‖ · ‖D.

In what follows, we aim to show P = S(τ) in order to establish the Lemma. To this

end, first note that P being separable, and Theorem 7.1.7 in Bogachev (2007) imply that P

is Radon with respect to B(τ). Since B(τw) ⊆ B(τ) and τ -compact sets are also τw-compact,

it follows that P is also Radon on B(τw) when D is equipped with τw instead. Letting C

denote the cylindrical σ-algebra, we then conclude from C ⊆ B(τw) that P is also Radon

on C with D equipped with τw. Hence, for NP (τw) the minimal closed affine subspace of D

for which P (NP (τw)) = 1, we obtain from P being Radon on C and Proposition 7.4(i) in
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Davydov et al. (1998) that

NP (τw) = S(τw) . (1.158)

Moreover, since affine spaces are convex, Theorem 5.98 in Aliprantis and Border (2006)

implies NP (τ) = NP (τw). Thus, since S(τ) is τw-closed, we have by (1.158):

S(τ) ⊆ NP (τ) = NP (τw) = S(τw) ⊆ S(τ) . (1.159)

However, by Proposition 7.4(ii) in Davydov et al. (1998), 0 ∈ NP (τ) and hence NP (τ) must

be a vector space. Combining (1.157) and (1.158) we thus conclude S(τ) = P and the claim

of the Lemma follows.

1.6.2 Results for Examples 1.2.1-1.2.6

Lemma 1.6.8. Let A be totally bounded under a norm ‖ · ‖A, and Ā denote its closure

under ‖ · ‖A. Further let φ : `∞(A) → R be given by φ(θ) = supa∈A θ(a), and define

ΨĀ(θ) ≡ arg maxa∈Ā θ(a) for any θ ∈ C(Ā). Then, φ is Hadamard directionally differen-

tiable tangentially to C(Ā) at any θ ∈ C(Ā), and φ′θ : C(Ā)→ R satisfies:

φ′θ(h) = sup
a∈ΨĀ(θ)

h(a) h ∈ C(Ā) .

Proof: First note Corollary 3.29 in Aliprantis and Border (2006) implies Ā is compact

under ‖ · ‖A. Next, let {tn} and {hn} be sequence with tn ∈ R, hn ∈ `∞(A) for all n and

‖hn − h‖∞ = o(1) for some h ∈ C(Ā). Then note that for any θ ∈ C(Ā) we have:

| sup
a∈A
{θ(a) + tnhn(a)} − sup

a∈A
{θ(a) + tnh(a)}| ≤ tn‖hn − h‖∞ = o(tn) . (1.160)

Further note that since Ā is compact, ΨĀ(θ) is well defined for any θ ∈ C(Ā). Defining

Γθ : C(Ā) → C(Ā) to be given by Γθ(g) = θ + g, then note that Γθ is trivially continuous.
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Therefore, Theorem 17.31 in Aliprantis and Border (2006) and the relation

ΨĀ(θ + g) = arg max
a∈Ā

Γθ(g)(a) (1.161)

imply that ΨĀ(θ + g) is upper hemicontinuous in g. In particular, for ΨĀ(θ)ε ≡ {a ∈ Ā :

infa0∈ΨĀ(θ) ‖a− a0‖A ≤ ε}, it follows from ‖tnh‖∞ = o(1) that ΨĀ(θ + tnh) ⊆ ΨĀ(θ)δn for

some δn ↓ 0. Thus, since ΨĀ(θ) ⊆ ΨĀ(θ)δn we can conclude that

| sup
a∈Ā
{θ(a) + tnh(a)}− sup

a∈ΨĀ(θ)
{θ(a) + tnh(a)}|

= sup
a∈ΨĀ(θ)δn

{θ(a) + tnh(a)} − sup
a∈ΨĀ(θ)

{θ(a) + tnh(a)}

≤ sup
a0,a1∈Ā:‖a0−a1‖A≤δn

tn|h(a0)− h(a1)|

= o(tn) , (1.162)

where the final result follows from h being uniformly continuous by compactness of Ā.

Therefore, exploiting (1.160), (1.162) and θ being constant on ΨĀ(θ) yields

| sup
a∈A
{θ(a) + tnhn(a)} − sup

a∈A
θ(a)− tn sup

a∈ΨĀ(θ)
h(a)|

≤ | sup
a∈ΨĀ(θ)

{θ(a) + tnh(a)} − sup
a∈ΨĀ(θ)

θ(a)− tn sup
a∈ΨĀ(θ)

h(a)|+ o(tn) = o(tn) , (1.163)

which verifies the claim of the Lemma.

Lemma 1.6.9. Let w : R → R+ satisfy
∫
Rw(u)du < ∞ and φ : `∞(R) × `∞(R) → R be

given by φ(θ) =
∫
R max{θ(1)(u)−θ(2)(u), 0}w(u)du for any θ = (θ(1), θ(2)) ∈ `∞(R)×`∞(R).

Then, φ is Hadamard directionally differentiable at any θ ∈ `∞(R) × `∞(R) with φ′θ :

`∞(R)× `∞(R)→ R satisfying for any h = (h(1), h(2)) ∈ `∞(R)× `∞(R)

φ′θ(h) =

∫
B0(θ)

max{h(1)(u)− h(2)(u), 0}w(u)du+

∫
B+(θ)

(h(1)(u)− h(2)(u))w(u)du ,

where B+(θ) ≡ {u ∈ R : θ(1)(u) > θ(2)(u)} and B0(θ) ≡ {u ∈ R : θ(1)(u) = θ(2)(u)}.
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Proof: Let {hn} = {(h(1)
n , h

(2)
n )} be a sequence in `∞(R)×`∞(R) satisfying ‖h(1)

n −h(1)‖∞∨

‖h(2)
n − h(2)‖∞ = o(1) for some h = (h(1), h(2)) ∈ `∞(R)× `∞(R), and

B−(θ) ≡ {u ∈ R : θ(1)(u) < θ(2)(u)} . (1.164)

Next, observe that since θ(1)(u)− θ(2)(u) < 0 for all u ∈ B−(θ), and ‖h(1)
n − h(2)

n ‖∞ = O(1)

due to ‖h(1) − h(2)‖∞ <∞, the dominated convergence theorem yields that:

∫
B−(θ)

max{(θ(1)(u)− θ(2)(u)) + tn(h(1)
n (u)− h(2)

n (u)), 0}w(u)du

. tn

∫
B−(θ)

1{tn(h(1)
n (u)− h(2)

n (u)) ≥ −(θ(1)(u)− θ(2)(u))}w(u)du = o(tn) . (1.165)

Thus, (1.165), B−(θ)c = B+(θ) ∪B0(θ) and dominated convergence theorem imply

1

tn
{φ(θ + tnhn)− φ(θ)}

=

∫
B−(θ)c

max{h(1)
n (u)− h(2)

n (u),−θ(u)(1) − θ(2)(u)

tn
}w(u)du+ o(1) = φ′θ(h) + o(1)

which establishes the claim of the Lemma.

Lemma 1.6.10. Let Assumptions 1.2.1, 1.2.3 hold, and A be compact under ‖·‖A. Further

suppose φ : `∞(A) → R is Hadamard directionally differentiable tangentially to C(A) at

θ0 ∈ C(A), and that for some A0 ⊆ A, its derivative φ′θ0 : C(A)→ R is given by:

φ′θ0(h) = sup
a∈A0

h(a) . (1.166)

If Â0 ⊆ A outer almost surely, and dH(Â0, A0, ‖ · ‖A) = op(1), then it follows that φ̂′n :

`∞(A)→ R given by φ̂′n(h) = supa∈Â0
h(a) for any h ∈ `∞(A) satisfies (1.39).

Proof: First note that φ̂′n is outer almost surely Lipschitz since |φ̂′n(h1) − φ̂′n(h2)| ≤

‖h1 − h2‖∞ for all h1, h2 ∈ `∞(A) due to Â0 ⊆ A outer almost surely. Therefore, by
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Lemma 1.6.6 it suffices to verify that for any h ∈ C(A), φ̂′n satisfies

|φ̂′n(h)− φ′θ0(h)| = op(1) . (1.167)

Towards this end, fix an arbitrary ε0 > 0 and note h is uniformly continuous on A due to

A being compact. Hence, we conclude there exists an η > 0 such that

sup
‖a1−a2‖A<η

|h(a1)− h(a2)| < ε0 . (1.168)

Moreover, given the definitions of φ̂′n and φ′θ0 it also follows that for any h ∈ `∞(A):

|φ̂′n(h)− φ′θ0(h)| ≤ sup
‖a1−a2‖A≤dH(Â0,A0,‖·‖A)

|h(a1)− h(a2)| . (1.169)

Thus, by results (1.168) and (1.169), and the Hausdorff consistency of Â0, we obtain:

lim sup
n→∞

P (|φ̂′n(h)− φ′θ0(h)| > ε0) ≤ lim sup
n→∞

P (dH(Â0, A0, ‖ · ‖A) > η) = 0 . (1.170)

It follows that (1.167) indeed holds, and the claim of the Lemma follows.
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Chapter 2

Optimal Plug-in Estimators of

Directionally Differentiable

Functionals

Abstract

This chapter studies optimal estimation of parameters taking the form φ(θ0), where

θ0 is unknown but can be regularly estimated and φ is a known directionally differentiable

function. The irregularity caused by nondifferentiability of φ makes traditional optimal-

ity criteria such as semiparametric efficiency and minimum variance unbiased estimation

impossible to apply. We instead consider optimality in the sense of local asymptotic mini-

maxity – i.e. we seek estimators that locally asymptotically minimize the maximum of the

risk function. We derive the lower bound of local asymptotic minimax risk within a class of

plug-in estimators and develop a general procedure for constructing estimators that attain

the bound. As an illustration, we apply the developed theory to the estimation of the effect

of Vietnam veteran status on the quantiles of civilian earnings.

63
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2.1 Introduction

In many econometric problems, parameters of interest embody certain irregularity

that presents significant challenges for estimation and inference (Hirano and Porter, 2012;

Fang and Santos, 2014). A large class of these parameters take the form φ(θ0) where θ0

is a well-behaved parameter that depends on the underlying distribution of the data while

φ is a known but potentially nondifferentiable function. Economic settings in which such

irregularity arises with ease include treatment effects (Manski and Pepper, 2000; Hirano

and Porter, 2012; Song, 2014, 2015), interval valued data (Manski and Tamer, 2002), in-

complete auction models (Haile and Tamer, 2003), and estimation under shape restrictions

(Chernozhukov et al., 2010).

The aforementioned examples share the common feature of φ being directionally

differentiable despite a possible failure of full differentiability. In this paper, we study op-

timal estimation of φ(θ0) for such irregular φ. In regular settings, one usually thinks of

optimality in terms of semiparametric efficiency (Bickel et al., 1993). Unfortunately, the

irregularity caused by nondifferentiability of φ makes traditional optimality criteria includ-

ing semiparametric efficiency impossible to apply – in particular, if φ is nondifferentiable,

then any estimator for φ(θ0) is necessarily irregular and biased(Hirano and Porter, 2012).

Hence, the first question we need to address is: what is an appropriate notion of optimal-

ity for nondifferentiable φ? Following the decision theoretic framework initiated by Wald

(1950) and further developed by Le Cam (1955, 1964), we may compare the competing

estimators under consideration by examining their expected losses. Specifically, let Tn be

an estimator of φ(θ0) and ` a loss function that measures the loss of estimating φ(θ0) using

Tn by `(rn{Tn − φ(θ0)}), where rn ↑ ∞ is the rate of convergence for estimation of θ0. The

resulting expected loss or risk function is then

EP [`(rn{Tn − φ(θ(P ))})] , (2.1)

where EP denotes the expectation taken with respect to P that generates the data and
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θ0 ≡ θ(P ) signifies the dependence of θ0 on P . The function (2.1) can in turn be employed

to assess the performance of the estimator Tn – in particular, we would like an estimator

to have the smallest possible risk at every P in the model. Unfortunately, it is well known

that there exist no estimators that minimize the risk uniformly for all P (Lehmann and

Casella, 1998).

As ways out of this predicament, one can either restrict the class of competing es-

timators, or seek an estimator that has the smallest risk in some overall sense. For the

former approach, common restrictions imposed on estimators include mean unbiasedness,

quantile unbiasedness and equivariance (including regularity which is also known as asymp-

totic equivariance in law). By Hirano and Porter (2012), however, if φ is only directionally

differentiable, then no mean unbiased, quantile unbiased or regular estimators exist. It is

noteworthy that non-existence of unbiased estimators implies that bias correction proce-

dures cannot fully eliminate the bias of any estimator; in fact, any procedure that tries to

remove the bias would push the variance to infinity (Doss and Sethuraman, 1989). As to

equivariance in terms of groups of transformations, it is unclear to us what a suitable group

of invariant transformations should be. Alternatively, one may translate the risk function

(2.1) into a single number such as Bayesian risk that leads to average risk optimality or the

maximum risk that leads to minimaxity. Since our analysis shall focus on local risk, one

may not have natural priors on the space of localization parameters in order to evaluate the

Bayesian risk. Moreover, when the model is semiparametric or nonparametric which our

setup accommodates, Bayes estimators entail specification of priors on infinite dimensional

spaces which practitioners may lack.

The approach we adopt in this paper towards optimal estimation of φ(θ0) is a

combination of the above two: we confine our attention to the important class of plug-in

estimators of the form φ(θ̂n), where θ̂n is a regular estimator of θ0, and seek estimators that

minimize the maximum of the risk function – i.e. the risk under the worst case scenario.

In addition, the optimality shall be in local sense, that is, we consider maximum risk over

neighborhoods around the distribution that generates the data. This is justified by the

facts that global risk is somewhat too restrictive for infinite dimensional P (Bickel et al.,
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1993, p.21) and that one can locate the unknown parameter with considerable precision as

sample size increases (Hájek, 1972). Specifically, for θ̂n an arbitrary regular estimator of θ0,

we establish the lower bound of the following local asymptotic minimax risk:

sup
I⊂fH

lim inf
n→∞

sup
h∈I

EPn,h [`(rn{φ(θ̂n)− φ(θ(Pn,h))})] , (2.2)

where H is the set of localization parameters, and I ⊂f H signifies that I is a finite

subset of H so that the first supremum is taken over all finite subsets of H.1 For detailed

explanations on why we take the above version of local asymptotic minimaxity, which dates

back to van der Vaart (1988a, 1989), we defer our discussion to Section 2.2.3. The lower

bound derived relative to the local asymptotic minimax risk (2.2) is consistent with the

regular case (van der Vaart and Wellner, 1996); moreover, it is also consistent with previous

work by Song (2014) who studies a more restrictive class of irregular parameters.

We also present a general procedure of constructing optimal plug-in estimators. An

optimal plug-in estimator is of the form φ(θ̂n + ûn/rn), where θ̂n is an efficient estimator

of θ0 usually available from efficient estimation literature, and ûn is a correction term

that depends on the particular loss function `. It is interesting to note that optimality

is preserved under simple plug-in for differentiable maps (van der Vaart, 1991b), but in

general not for nondifferentiable ones due to the presence of the correction term ûn – i.e.

ûn equals zero when φ is differentiable but may be nonzero otherwise. Heuristically, the

need of the correction term ûn arises from the fact that the simple plug-in estimator φ(θ̂n)

may have undesirably high risk at θ0 where φ is nondifferentiable. By adding a correction

term, one is able to reduce the risk under the worst case scenario. As an illustration, we

apply the construction procedure to the estimation of the effect of Vietnam veteran status

on the quantiles of civilian earnings. In the application, the structural quantile functions of

earnings exhibit local nonmonotonicity, especially for veterans. Nonetheless, by estimating

the closest monotonically increasing functions to the population quantile processes, we are

1For example, if P is parametrized as θ 7→ Pθ where θ belongs to an open set Θ ⊂ Rk, one typically
considers local parametrization h 7→ Pθ0+h/

√
n with local parameter h ranging over the whole space Rk. We

shall have a formal definition of H in Section 2.2.2.
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able to resolve this issue and provide locally asymptotically minimax plug-in estimators.

There has been extensive study on optimal estimation of regular parameters (Ibragi-

mov and Has’minskii, 1981; Bickel et al., 1993; Lehmann and Casella, 1998). The best known

optimality results are characterized by the convolution theorems and the local asymptotic

minimax theorems (Hájek, 1970, 1972; Le Cam, 1972; Koshevnik and Levit, 1976; Levit,

1978; Begun et al., 1983; Millar, 1983, 1985; Chamberlain, 1987; van der Vaart, 1988b;

van der Vaart and Wellner, 1990; van der Vaart, 1991a). However, little work has been

done on nondifferentiable parameters. Blumenthal and Cohen (1968a,b) considered mini-

max estimation of the maximum of two translation parameters and pointed out the link

between biased estimation and nondifferentiability of the parameter. Hirano and Porter

(2012) formally established the connection between differentiability of parameters and pos-

sibility of regular, mean unbiased and quantile unbiased estimation, and emphasized the

need for alternative optimality criteria when the parameters of interest are nondifferen-

tiable. Chernozhukov et al. (2013) considered estimation of intersection bounds in terms of

median-bias-corrected criterion. The work by Song (2014, 2015) is mostly closely related to

ours. By restricting the parameter of interest to be a composition of a real valued Lipschitz

function having a finite set of nondifferentiability points and a translation-scale equivariant

real-valued map, Song (2014, 2015) was able to establish local asymptotic minimax estima-

tion within the class of arbitrary estimators. In present paper, we consider a much wider

class of parameters at the expense of restricting the competing estimators to be of a plug-in

form. We note also that for differentiable φ, the optimality of the plug-in principle has been

established by van der Vaart (1991b).

The remainder of the paper is structured as follows. Section 2.2 formally introduces

the setup, presents a convolution theorem for efficient estimation of θ that will be essential

for later discussion, and specifies the suitable version of local asymptotic minimaxity crite-

rion for our purposes. In Section 2.3 we derive the minimax lower bound for the class of

plug-in estimators, and then present a general construction procedure. Section 2.4 applies

the theory to the estimation of the effect of Vietnam veteran status on the quantiles of

civilian earnings. Section 2.5 concludes. All proofs are collected in Appendices.
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2.2 Setup, Convolution and Minimaxity

In this section, we formally set up the problem under consideration, present a con-

volution theorem for the estimation of θ, and establish the optimality criterion that will be

employed to assess the statistical performance of plug-in estimators φ(θ̂n).

2.2.1 Setup and Notation

In order to accommodate applications such as incomplete auction models and esti-

mation under shape restrictions, we must allow for both the parameter θ0 and the map φ

to take values in possibly infinite dimensional spaces; see Examples 2.2.3 and 2.2.4 below.

We therefore impose the general requirement that θ0 ∈ Dφ and φ : Dφ ⊆ D→ E for D and

E Banach spaces with norms ‖ · ‖D and ‖ · ‖E respectively, and Dφ the domain of φ.

The estimator θ̂n is assumed to be an arbitrary map of the sample {Xi}ni=1 into the

domain of φ. Thus, the distributional convergence in our context is understood to be in

the Hoffman-Jørgensen sense and expectations throughout should be interpreted as outer

expectations (van der Vaart and Wellner, 1996), though we obviate the distinction in the

notation.

We introduce notation that is recurrent in this paper. For two sets A and B, we

write A ⊂f B to signify that A is a finite subset of B. For a finite set {g1, . . . , gm}, we write

gm ≡ (g1, . . . , gm)ᵀ. Lastly, we define Km
λ ≡ {x ∈ Rm : ‖x‖ ≤ λ} for λ > 0.

2.2.1.1 Examples

To illustrate the applications of our framework, we begin by presenting some exam-

ples that arise in the econometrics and statistics literature. We shall revisit these examples

later on as we develop our theory. To highlight the essential ideas and for ease of exposition,

we base our discussion on simplifications of well known examples. The general case can be

handled analogously.

In the treatment effect literature one might be interested in estimating the maximal

treatment effect. Our first example has been considered in Hirano and Porter (2012) and
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Song (2014, 2015).

Example 2.2.1 (Best Treatment). Let X = (X(1), X(2))ᵀ ∈ R2 be a pair of potential

outcomes under two treatments. Consider the problem of estimating the parameter

φ(θ0) = max{E[X(1)], E[X(2)]} . (2.3)

One can think of φ(θ0) as the expected outcome under the best treatment. Here, θ0 =

(E[X(1)], E[X(2)])ᵀ, D = R2, E = R, and φ : R2 → R is given by φ(θ) = max(θ(1), θ(2)).

Parameters of this type are essential in characterizing optimal decision rules in dynamic

treatment regimes which, as opposed to classical treatment, incorporate heterogeneity across

both individuals and time (Murphy, 2003). The functional form of (2.3) is also related to the

study of bounds of treatment effects under monotone instruments (Manski and Pepper, 2000,

2009). Minimax estimation of φ(θ) when X(1) and X(2) are independent normal random

variables with equal variances has been studied in Blumenthal and Cohen (1968a,b).

Partial identification is an inherent feature of statistical analysis based on interval

censored data. In these settings, one might still want to estimate identified features of the

model under consideration. Our second example is based on Manski and Tamer (2002) who

study inference on regressions with interval data on a regressor or outcome.

Example 2.2.2 (Interval Regression Model). Let Y ∈ R be a random variable generated

by

Y = α+ βW + ε ,

where W ∈ {−1, 0, 1} is a discrete random variable, and E[ε|W ] = 0. Suppose that Y is

unobservable but there exist (Yl, Yu) such that Yl ≤ Y ≤ Yu almost surely. Let ϑ = (α, β)ᵀ

and Z = (1,W )ᵀ. Then the identified region for ϑ is

Θ0 ≡ {ϑ ∈ R2 : E[Yl|Z] ≤ Zᵀϑ ≤ E[Yu|Z]} .

Interest often centers on either the maximal value of a particular coordinate of ϑ or the
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maximal value of the conditional expectation E[Y |W ] at a specified value of the covariates,

both of which can be expressed as

sup
ϑ∈Θ0

λᵀϑ , (2.4)

for some known λ ≡ (λ(1), λ(2))ᵀ ∈ R2. Let θ0 ≡ (P (W = −1), P (W = 1))ᵀ. It is shown in

Appendix 2.6.2 that the analysis of (2.4) reduces to examining terms of the form2

φ(θ0) = max{ψ(θ0), 0} , (2.5)

where for each θ = (θ(1), θ(2))ᵀ ∈ R2, ψ(θ) is defined by

ψ(θ) = λ(1) θ(1) + θ(2)

θ(1) + θ(2) − (θ(2) − θ(1))2
+ λ(2) θ(1) − θ(2)

θ(1) + θ(2) − (θ(2) − θ(1))2
.

In this example, D = R2, E = R and φ : R2 → R satisfies φ(θ) = max{ψ(θ), 0} with ψ(θ)

defined as above. The functional form of φ here is common in a class of partially identified

models (Beresteanu and Molinari, 2008; Bontemps et al., 2012; Chandrasekhar et al., 2012;

Kaido and Santos, 2014; Kaido, 2013a; Kline and Santos, 2013).

The next example presents a nondifferentiable function which appears as an identi-

fication bound on the distribution of valuations in an incomplete model of English auctions

(Haile and Tamer, 2003; Hirano and Porter, 2012).

Example 2.2.3 (Incomplete Auction Model). In an English auction model with symmetric

independent private values, a robust approach of interpreting bidding data proposed by

Haile and Tamer (2003) is to assume only that bidders neither bid more than their valuations

nor let an opponent win at a price they would be willing to beat. Consider two auctions

in which bidders’ valuations are i.i.d. draws from F . Let Bi and Vi be bidder i’s bid and

valuation respectively, and let F1 and F2 be the distributions of bids in two auctions. The

2Here we work with φ(θ0) for simplicity and ease of exposition.
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first assumption implies Bi ≤ Vi for all i, which in turn imposes a upper bound of F :3

F (v) ≤ min{F1(v), F2(v)} .

Similarly, by exploiting the assumption that bidders do not let an opponent win at a price

below their willingness to pay, one may obtain a lower bound on F . For simplicity, we

consider only the upper bound which we write as

φ(θ0)(v) = min{F1(v), F2(v)} . (2.6)

In this example, θ0 = (F1, F2), D = `∞(R)× `∞(R), E = `∞(R) and φ : `∞(R)× `∞(R)→

`∞(R) satisfies φ(θ)(v) ≡ min{θ(1)(v), θ(2)(v)}.

Our final example involves a map that monotonizes estimators in linear quantile

regressions. Being estimated in pointwise manner, the quantile regression processes need

not be monotonically increasing (Bassett and Koenker, 1982; He, 1997). This problem can

be fixed by considering the closest monotonically increasing function.4

Example 2.2.4 (Quantile Functions without Crossing). Let Y ∈ R and Z ∈ Rd be random

variables. Consider the linear quantile regression model:

β(τ) ≡ arg min
β∈Rd

E[ρτ (Y − Z ′β)] ,

where ρτ (u) ≡ u(τ − 1{u ≥ 0}). Let T ≡ [ε, 1 − ε] for some ε ∈ (0, 1/2) and θ0 ≡ c′β(·) :

T → R be the quantile regression process, for fixed Z = c. Under misspecification, θ0 need

not be monotonically increasing. In order to avoid the quantile crossing problem, we may

instead consider projecting θ0 onto the set of monotonically increasing functions – i.e. the

3Haile and Tamer (2003) actually exploit order statistics of bids in order to obtain tighter bounds on F .
4Alternatively, Chernozhukov et al. (2010) propose employing a sorting operator to monotonize possibly

nonmonotone estimators.
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closest monotonically increasing function to θ0:

φ(θ0) = ΠΛθ0 ≡ arg min
λ∈Λ

‖λ− θ0‖L2 , (2.7)

where Λ be the set of monotonically increasing functions in L2(T , ν) with ν the Lebesgue

measure on T , and ΠΛ is the metric projection onto Λ – i.e. the mapping that assigns

every point in L2(T ) with the closest point in Λ.5 In this example, D = L2(T ), E =

Λ and φ : L2(T ) → Λ is defined by φ(θ) = ΠΛθ. We note that the metric projection

approach introduced here can in fact handle a larger class of estimation problems under

shape restrictions; see Remark 2.2.1.

Remark 2.2.1. Let θ0 : T → R be a unknown real valued function where T = [a, b] with

−∞ < a < b <∞. Then one may monotonize θ0 by considering the nearest monotonically

increasing function φ(θ0) ≡ ΠΛθ0 where Λ ⊂ L2(T ) is the set of increasing functions. More

generally, one may take Λ to be a closed and convex set of functions satisfying certain shape

restrictions such as convexity and homogeneity. Then the projection ΠΛθ0 of θ0 onto Λ is

the closest function to θ0 with desired shape restrictions.

2.2.2 The Convolution Theorem

In this section, before delving into the discussion of the defining ingredient φ, we

formalize basic regularity assumptions and then present a convolution theorem for the

estimation of θ0, which in turn will be employed when deriving the asymptotic minimax

lower bound for the estimation of φ(θ0).

Following the literature on limits of experiments (Blackwell, 1951; Le Cam, 1972;

van der Vaart, 1991a), we consider a sequence of experiments En ≡ (Xn,An, {Pn,h : h ∈ H}),

where (Xn,An) is a measurable space, and Pn,h is a probability measure on (Xn,An), for

each n ∈ N and h ∈ H with H a subspace of some Hilbert space equipped with inner

product 〈·, ·〉H and induced norm ‖ · ‖H . We observe a sample X1, . . . , Xn that is jointly

distributed according to some Pn,h. This general framework allows us to consider non

5The set Λ is closed and convex so that the metric projection ΠΛ exists and is unique; see Appendix 2.6.2
for detailed discussion.
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i.i.d. models (Ibragimov and Has’minskii, 1981; van der Vaart, 1988b; van der Vaart and

Wellner, 1990) as well as common i.i.d. setup. We confine our attention to the family of

probability measures {Pn,h : h ∈ H} possessing local asymptotic normality; see Assumption

2.2.1(ii).6 This is perhaps the most convenient class to begin with in the literature of efficient

estimation, since mutual contiguity implied by local asymptotic normality allows us, by Le

Cam’s third lemma, to deduce weak limits along sequence {Pn,h}∞n=1 from that under the

fixed sequence {Pn,0}∞n=1 – usually thought of as the underlying truth. Formally, we impose

Assumption 2.2.1. (i) The set H is a subspace of some separable Hilbert space with inner

product 〈·, ·〉H and induced norm ‖ · ‖H .

(ii) The sequence of experiments (Xn,An, {Pn,h : h ∈ H}) is asymptotically normal, i.e.

log
dPn,h
dPn,0

= ∆n,h −
1

2
‖h‖2H , (2.8)

where {∆n,h : h ∈ H} is a stochastic process which converges to {∆h : h ∈ H}

marginally under {Pn,0},7 with {∆h : h ∈ H} a Gaussian process having mean zero

and covariance function given by E[∆h1∆h2 ] = 〈h1, h2〉H .8

Separability as in Assumption 2.2.1(i) is only a minimal requirement in practice,

while linearity is standard although not entirely necessary.9 The essence of Assumption

2.2.1(ii) is that the sequence of experiments En can be asymptotically represented by a

Gaussian shift experiment. Thus, one may “pass to the limit first”, “argue the case for the

limiting problem” which has simpler statistical structure, and then translate the results back

to the original experiments En (Le Cam, 1972).10 In the i.i.d. case, Assumption 2.2.1(ii) is

guaranteed by the so-called differentiability in quadratic mean; see Remark 2.2.2.

6Our results in fact extend to models having local asymptotic mixed normality; see Jeganathan (1981,
1982) and van der Vaart (1998, Section 9.6).

7That is, for any finite set I ⊂ H, (∆n,h : h ∈ I)
L−→ (∆h : h ∈ I) under {Pn,0}.

8Here, dPn,0 and dPn,h can be understood as densities of Pn,0 and Pn,h with respect to some σ-finite
measure µn, respectively. Fortunately, the log ratio above is independent of the choice of µn; see van der
Vaart (1998, p.189-91).

9In fact, H can be relaxed to be a convex cone; see van der Vaart and Wellner (1996) and van der Vaart
(1989).

10From a technical level, for any finite set I ⊂ H, weak convergence of likelihoods in Assumption 2.2.1(ii)
is equivalent to convergence in terms of Le Cam’s deficiency distance (Le Cam, 1972, 1986).
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Regularity conditions on the parameter θ and an estimator θ̂n are imposed as follows.

In our setup, we recognize θ as a map θ : {Pn,h} → D and write θn(h) ≡ θ(Pn,h).

Assumption 2.2.2. The parameter θ : {Pn,h} → Dφ ⊂ D, where D is a Banach space with

norm ‖ · ‖D, is regular, i.e. there exists a continuous linear map θ′0 : H → D such that for

every h ∈ H,

rn{θn(h)− θn(0)} → θ′0(h) as n→∞ , (2.9)

for a sequence of {rn} with rn →∞ as n→∞.

Assumption 2.2.3. θ̂n : {Xi} → Dφ is regular, i.e. there is a fixed tight random variable

G ∈ D such that for any h ∈ H,

rn{θ̂n − θn(h)}
Ln,h→ G in D , (2.10)

where
Ln,h→ denotes weak convergence under {Pn,h}.

Assumption 2.2.2, which dates back to Pfanzagl and Wefelmeyer (1982), is essen-

tially a Hadamard differentiability requirement; see Remark 2.2.3. Our optimality analysis

shall extend from Hadamard differentiable parameters to a class of (Hadamard) direction-

ally differentiable parameters. The derivative θ′0 : H → D is crucial in determining the

efficiency bound for estimating θ. If D = Rm, the derivative θ′0 : H → Rm uniquely de-

termines through the Riesz representation theorem a m × 1 vector θ̃0 of elements in the

completion H of H such that θ′0(h) = 〈θ̃0, h〉 for all h ∈ H. The matrix Σ0 ≡ 〈θ̃0, θ̃
ᵀ
0〉

is called the efficiency bound for θ. For general D, the efficiency bound is characterized

through the topological dual space D∗ of D (Bickel et al., 1993); see Theorem 2.2.1.

Assumption 2.2.3 means that {θ̂n} is asymptotically equivariant in law for esti-

mating θn(h), or put it another way, the limiting distribution of {θ̂n} is robust to “local

perturbations” {Pn,h} of the “truth” {Pn,0}. In this way it restricts the class of plug-in es-

timators we consider. For instance, superefficient estimators such as Hodges’ estimator and

shrinkage estimators are excluded from our setup (Le Cam, 1953; Huber, 1966; Hájek, 1972;
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van der Vaart, 1992). Finally, we note that while regularity of θ, as ensured by Assumption

2.2.2, is necessary for Assumption 2.2.3 to hold (Hirano and Porter, 2012), it is in general

not sufficient unless the model is parametric (Bickel et al., 1993).

Assumptions 2.2.1, 2.2.2 and 2.2.3 together place strong restrictions on the struc-

ture of the asymptotic distribution of θ̂n. In particular, for every θ̂n satisfying the above

regularity conditions, its weak limit can be represented as the efficient Gaussian random

variable plus an independent noise term, as illustrated in the following convolution theorem

taken directly from van der Vaart and Wellner (1990). The derivative θ′0 : H → D as a

continuous linear map has an adjoint map θ′∗0 : D∗ → H satisfying d∗θ′0(h) = 〈θ′∗0 d∗, h〉H for

all d∗ ∈ D∗; that is, θ′∗0 maps the dual space D∗ of D into H.

Theorem 2.2.1 (Hájek-Le Cam Convolution Theorem). Let (Xn,An, {Pn,h : h ∈ H}) be a

sequence of statistical experiments, and θ̂n be an estimator for the parameter θ : {Pn,h} → D.

Suppose that Assumptions 2.2.1, 2.2.2 and 2.2.3 hold. It follows that11

G d
= G0 + U , (2.11)

where G0 is a tight Gaussian random variable in D satisfying d∗G0 ∼ N (0, ‖θ′∗0 d∗‖2H) for

every d∗ ∈ D∗, and U is a tight random variable in D that is independent of G0. Moreover,

the support of G0 is θ′0(H) (the closure of {θ′0(h) : h ∈ H} relative to ‖ · ‖D).12

One important implication of Theorem 2.2.1 is that a regular estimator sequence

{θ̂n} is considered efficient if its limiting law is such that U is degenerate at 0. In addition,

normality being “the best limit” is a result of optimality, rather than an ex ante restriction.

If φ is Hadamard differentiable, then we may conclude immediately that φ(θ̂n) is an efficient

estimator for φ(θ0) if θ̂n is for θ0 (van der Vaart, 1991b). When φ is Hadamard directionally

differentiable only, however, we have to base our optimality analysis within the class of

irregular estimators because no regular estimators exist in this context (Hirano and Porter,

2012). As a result, the convolution theorem is not available in general, which motivates the

11The symbol
d
= denotes equality in distribution.

12The support of G0 refers to the intersection of all closed subsets D0 ⊂ D with P (G0 ∈ D0) = 1.
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optimality analysis in terms of asymptotic minimax criterion.

Remark 2.2.2. Let {Xi}ni=1 be an i.i.d. sample with common distribution P that is known

to belong to a collection P of Borel probability measures, and let {Pt : t ∈ (0, ε)} ⊂ P with

P0 = P be a submodel such that

∫
[
dP

1/2
t − dP 1/2

t
− 1

2
hdP 1/2]2 → 0 as t ↓ 0 , (2.12)

where h is called the score of this submodel. In this situation, we identify Pn,h with∏n
i=1 P1/

√
n,h where {P1/

√
n,h} is differentiable in quadratic mean with score h, and the

set Ṗ0 of all score functions thus obtained, which are necessarily elements of L2(P ), will be

the index set H, also known as the tangent set of P. It can be shown that the sequence

{Pn,h} satisfies Assumption 2.2.1(ii) (van der Vaart and Wellner, 1996).

Remark 2.2.3. Let {Xi}ni=1 be an i.i.d. sample generated according to some P ∈ P where

P is dominated by a σ-finite measure µ. Since P can be embedded into L2(µ) via the

mapping Q 7→
√
dQ/dµ, we can obtain a tangent set Ṡ0 consisting of Fréchet derivatives

of differentiable paths {dP 1/2
t } in L2(µ) (Bickel et al., 1993). Define the continuous linear

operator θ̇0 : Ṡ0 → D by θ̇0(g) ≡ θ′0(2g/dP 1/2), then (2.9) can be read as

lim
t↓0

t−1{θ(dP 1/2
t )− θ(dP 1/2)} = θ̇0(g) , (2.13)

where {dP 1/2
t } is a curve passing dP 1/2 with Fréchet derivative g ≡ 1

2hdP
1/2. This is exactly

Hadamard differentiability if we view θ as a map from {
√
dQ/dµ : Q ∈ P} ⊂ L2(µ) to the

space D.

2.2.3 Local Asymptotic Minimaxity

There are different versions of local asymptotic minimax risk. In this section we

briefly review some of these and specify the one that is appropriate for our purposes. For

simplicity of exposition, let us confine our attention to the i.i.d. case. Let P be a collection

of probability measures, θ the parameter of interest and ` a loss function. In an asymptotic
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framework, a global minimax principle would imply that an asymptotically best estimator

sequence {Tn} of θ should be the one for which the quantity

lim inf
n→∞

sup
P∈P

EP [`(rn{Tn − θ(P )})] (2.14)

is minimized, where EP denotes expectation under P , and rn ↑ ∞ is the rate of conver-

gence for estimating θ. While this version is suitable when P is parametric, it is somewhat

too restrictive for semiparametric or nonparametric models. In addition, this approach is

excessively cautious since we are able to learn about P with arbitrary accuracy as sample

size n → ∞ and hence it would be unreasonable to require nice properties of the esti-

mator sequence around regions too far away from the truth (Hájek, 1972; Ibragimov and

Has’minskii, 1981; van der Vaart, 1992). The strategy is then to minimize the asymptotic

maximum risk over (shrinking) neighborhoods of the truth.

The earliest consideration of local asymptotic minimaxity in the literature is perhaps

Chernoff (1956), according to whom the idea actually originated from Charles Stein and

Herman Rubin. Different variants have been developed since then (Hájek, 1972; Koshevnik

and Levit, 1976; Levit, 1978; Chamberlain, 1987), among which an important version is of

the form

lim
a→∞

lim inf
n→∞

sup
P∈Vn,a

EP [`(rn{Tn − θ(P )})] , (2.15)

where Vn,a shrinks to the truth as n → ∞ for each fixed a ∈ R and spans the whole

parameter space as a→∞ for each fixed n ∈ N (Ibragimov and Has’minskii, 1981; Millar,

1983). For instance, Begun et al. (1983) and van der Vaart (1988b) take Vn,a to be:

Vn,a = {Q ∈ P : rndH(Q,P ) ≤ a} , dH(Q,P ) ≡ [

∫
(dQ1/2 − dP 1/2)2]1/2 .

However, the above neighborhood versions may invite two problems. First, the

neighborhoods might be too large so that the sharp lower bounds are infinite. This is more

easily seen in the Hellinger ball version. As pointed out by van der Vaart (1988b, p.32),
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one may pick Qn ∈ Vn(P, a) for each n ∈ N such that
∏n
i=1Qn is not contiguous to

∏n
i=1 P

(Oosterhoff and van Zwet, 1979, Theorem 1), which in turn implies that rn{Tn−θ} escapes

to “infinity” under
∏n
i=1Qn (Lehmann and Romano, 2005, Theorem 12.3.2). Second, when

it comes to the construction of an optimal estimator, one typically has to establish uniform

convergence over the neighborhoods, which may be impossible if the neighborhoods are “too

big”.

In this paper, we shall consider local asymptotic minimax risk over smaller neigh-

borhoods – more precisely, neighborhoods that consist of finite number of distributions –

as in van der Vaart (1988b, 1989, 1998) and van der Vaart and Wellner (1990, 1996):

sup
I⊂f Ṗ0

lim inf
n→∞

sup
h∈I

EPn,h [`(rn{Tn − θ(Pn,h)})] , (2.16)

where the first supremum is taken over all finite subsets I in the tangent set Ṗ0 as defined in

Remark 2.2.2, and {Pn,h} is a differentiable path with score h. This resolves the aforemen-

tioned concerns as well as two subtleties that are worth noting here. First, it is necessary to

take supremum over neighborhoods of the truth (the second supremum) in order to obtain

robust finite sample approximation and as a result rule out superefficient estimators, while

the first supremum is needed to remove the uncertainty of the neighborhoods.13 Second,

the local nature of the risk may be translated to the global one if one replaces the second

supremum with suph∈Ṗ0 and ignore the first supremum, so that we are back to the afore-

mentioned uniformity issue. Another possibility is to consider finite dimensional submodels;

see Remark 2.2.4.

Remark 2.2.4. As another approach to circumvent the contiguity and uniformity con-

cerns aforementioned, van der Vaart (1988b) considers a version of asymptotic minimaxity

based on finite dimensional submodels. Let h1, . . . , hm ∈ Ṗ0 be linearly independent and

{Pmn,λ}∞n=1 a differentiable path with score
∑m

j=1 λjhj for each fixed λ ∈ Rm. As λ ranges

over Rm, we obtain a full description of local perturbations of some parametric submodel.

13The role played by supI⊂f Ṗ0 is the same as that by lima→∞ in display (2.15).
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Then one may consider the following:

sup
Hm

lim
a→∞

lim inf
n→∞

sup
‖λ‖≤a

EPmn,λ [`(rn{Tn − θ(Pmn,λ)})] , (2.17)

where the first supremum is taken over all finite dimensional subspaces Hm ⊂ Ṗ0 spanned

by h1, . . . , hm. The same approach has been employed by van der Vaart (1988b, 1989) to

obtain generalized convolution theorems for weakly regular estimators. We note however

that this version of local asymptotic minimaxity is equivalent to (2.16) in the sense that

they yield the same lower bound that is attainable and hence induce the same optimal

plug-in estimators. This is essentially because for any parametric submodel Pm with scores

h1, . . . , hm, the expansion of the log likelihood ratio (2.8) holds uniformly over λ ∈ K with

K any compact set in Rm (Bickel et al., 1993, Proposition 2.1.2).

2.3 Optimal Plug-in Estimators

Building on the ingredients established for θ in previous section, we now proceed to

investigate optimal plug-in estimators of φ(θ). To begin with, we first review the notion of

Hadamard directional differentiability, then establish the minimax lower bound for the class

of plug-in estimators, and finally show the attainability by presenting a general procedure

of constructing optimal plug-in estimators.

2.3.1 Hadamard Directional Differentiability

A common feature of the examples introduced in Section 2.2.1.1 is that there exist

points θ ∈ D at which the map φ : D→ E is not differentiable. Nonetheless, at all such θ at

which differentiability is lost, φ actually remains directionally differentiable. This is most

easily seen in Examples 2.2.1 and 2.2.2, in which the domain of φ is a finite dimensional

space. In order to address Examples 2.2.3 and 2.2.4, however, a notion of directional

differentiability that is suitable for more abstract spaces D is necessary. Towards this end,

we follow Shapiro (1990) and define
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Definition 2.3.1. Let D and E be Banach spaces equipped with norms ‖ · ‖D and ‖ · ‖E

respectively, and φ : Dφ ⊆ D → E. The map φ is said to be Hadamard directionally

differentiable at θ ∈ Dφ if there is a map φ′θ : D→ E such that:

lim
n→∞

‖φ(θ + tnzn)− φ(θ)

tn
− φ′θ(z)‖E = 0 , (2.18)

for all sequences {zn} ⊂ D and {tn} ⊂ R+ such that tn ↓ 0, zn → z as n → ∞ and

θ + tnzn ∈ Dφ for all n.

As various notions of differentiability in the literature, Hadamard directional differ-

entiability can be understood by looking at the restrictions imposed on the approximating

map (i.e. the derivative) and the way the approximation error is controlled (Averbukh and

Smolyanov, 1967, 1968). Specifically, let

Remθ(z) ≡ φ(θ + z)− {φ(θ) + φ′θ(z)} , (2.19)

where φ(θ) + φ′θ(z) can be viewed as the first order approximation of φ(θ + z). Hadamard

directional differentiability of φ then amounts to requiring the approximation error Remθ(z)

satisfy that Remθ(tz)/t tends to zero uniformly in z ∈ K for any compact set K – i.e.

sup
z∈K
‖Remθ(tz)

t
‖E → 0 , as t ↓ 0 .

However, unlike Hadamard differentiability that requires the approximating map φ′θ be

linear and continuous, linearity of the directional counterpart is often lost though the con-

tinuity is automatic (Shapiro, 1990). In fact, linearity of the derivative is the exact gap

between these two notions of differentiability.

The way that Hadamard directional differentiability controls the approximation er-

ror ensures the validity of the Delta method, which we exploit in our asymptotic analysis.

Moreover, the chain rule remains valid for compositions of Hadamard directional differen-

tiable maps; see Remark 2.3.1.14 We note also that though Definition 3.2.2 is adequate for

14In fact, by slight modifications of the arguments employed in Averbukh and Smolyanov (1968), one can
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our purposes in this paper, there is a tangential version of Hadamard directional differen-

tiability, which restricts the domain of the derivative φ′θ0 to be a subset of D.

Remark 2.3.1. Suppose that ψ : B→ Dφ ⊂ D and φ : Dφ → E are Hadamard directionally

differentiable at ϑ ∈ B and θ ≡ ψ(ϑ) ∈ Dφ respectively, then φ ◦ ψ : B → E is Hadamard

directionally differentiable at ϑ with derivative φ′θ ◦ψ′ϑ : B→ E (Shapiro, 1990, Proposition

3.6). Thus, if θ : {Pn,h} → Dφ is not regular but θ(Pn,h) = ψ(ϑ(Pn,h)) for some parameter

ϑ : {Pn,h} → B admitting a regular estimator ϑ̂n and a Hadamard directionally differentiable

map ψ, then the results in this paper may be applied with φ̃ ≡ φ ◦ ψ, θ̃(Pn,h) ≡ ϑ(Pn,h),

and ϑ̂n in place of φ, θ(Pn,h) and θ̂n respectively.

2.3.1.1 Examples Revisited

We next verify Hadamard directional differentiability of the maps in the examples

introduced in Section 2.2.1.1, and hence show that they indeed fall into our setup. The first

example is straightforward.

Example 2.2.1 (Continued). Let j∗ = arg maxj∈{1,2} θ
(j). For any z = (z(1), z(2))′ ∈

R2, simple calculations reveal that φ′θ : R2 → R is given by

φ′θ(z) =


z(j∗) if θ(1) 6= θ(2)

max{z(1), z(2)} if θ(1) = θ(2)

. (2.20)

Note that φ′θ is nonlinear when Hadamard differentiability is not satisfied.

Example 2.2.2 (Continued). In this example, by the chain rule (see Remark 2.3.1) it

is easy to verify that

φ′θ(z) = ψ′θ(z)1{ψ(θ) > 0}+ max{ψ′θ(z), 0}1{ψ(θ) = 0} , (2.21)

show that Hadamard directional differentiability is the weakest directional differentiability that satisfies the
chain rule, just as Hadamard differentiability is the weakest differentiability that does the same job.
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where 1{·} denotes the indicator function, and

ψ′θ(z) =
[λ(1)(z(1) + z(2)) + λ(2)(z(1) − z(2))][θ(1) + θ(2) − (θ(2) − θ(1))2]

[θ(1) + θ(2) − (θ(2) − θ(1))2]2

− [λ(1)(θ(1) + θ(2)) + λ(2)(θ(1) − θ(2))][z(1) + z(2) − 2(θ(2) − θ(1))(z(2) − z(1))]

[θ(1) + θ(2) − (θ(2) − θ(1))2]2
.

Clearly, the directional derivative φ′θ is nonlinear at θ with ψ(θ) = 0.

Example 2.2.3 and 2.2.4 are more involved in that the domain and range of φ are

both infinite dimensional.

Example 2.2.3 (Continued). Let B1 = 1{x : θ(1)(x) > θ(2)(x)}, B2 = 1{x : θ(2)(x) >

θ(1)(x)} and B0 = 1{x : θ(1)(x) = θ(2)(x)}. Then it is not hard to show that φ is Hadamard

directionally differentiable at any θ ∈ `∞(R)×`∞(R) satisfying for any z ∈ `∞(R)×`∞(R),

φ′θ(z) = z(1)1B1 + z(2)1B2 + max{z(1), z(2)}1B0 . (2.22)

Here, nonlinearity occurs when the set of points at which θ(1) and θ(2) are equal is not

empty, implying Hadamard directional differentiability.

Example 2.2.4 (Continued). For a set A ⊂ L2(T ), denote the closed linear span of A

by [A], and define the complement A⊥ of A by A⊥ ≡ {z ∈ L2(T ) : 〈z, λ〉 = 0 for all λ ∈ A}.

Lemma 2.6.11 shows that ΠΛ is Hadamard directionally differentiable at every θ ∈ L2(T )

and the resulting derivative satisfies for all z ∈ L2(T )

φ′θ(z) = ΠCθ(z) , (2.23)

where

Cθ = Tθ ∩ [θ − θ]⊥ , Tθ =
⋃
α≥0

α{Λ− θ} , (2.24)

with θ = ΠΛθ. Note that Cθ is a closed convex cone, which can be thought of as a

local approximation to Λ at θ along the direction perpendicular to the projection residual



www.manaraa.com

83

θ − ΠΛθ. Unlike Fang and Santos (2014), the consideration of nonboundary points θ /∈ Λ

here is necessitated by the possible misspecification of conditional quantile functions.

2.3.2 The Lower Bounds

As the first step towards establishing the minimax lower bound, we would like to

leverage the Delta method for Hadamard directionally differentiable maps (Shapiro, 1991;

Dümbgen, 1993) to derive the weak limits of rn{φ(θ̂n) − φ(θn(h))} under {Pn,h}. This is

not a problem in i.i.d. settings since we may write

rn{φ(θ̂n)− φ(θn(h))} = rn{φ(θ̂n)− φ(θn(0))} − rn{φ(θn(h))− φ(θn(0))} ,

and then Delta method can be employed right away in view of the fact that θn(0) is typically

a constant. In general, however, we would hope the directional differentiability of φ is strong

enough to possess uniformity to certain extent.

There are two ways to obtain uniform differentiability in general. One natural way, of

course, is to incorporate uniformity into the definition of differentiability (van der Vaart and

Wellner, 1996, Theorem 3.9.5). For differentiable maps, continuous differentiability suffices

for uniform differentiability; for directionally differentiable ones, unfortunately, continuous

differentiability is a rare phenomenon. In fact, one can show by way of example that it is

unwise to include uniformity in the definition of Hadamard directional differentiability. The

other general principle of obtaining uniformity is to require θn(0) converge sufficiently fast.

Following Dümbgen (1993), we take this latter approach and require θn(0) converge in the

following manner:

Assumption 2.3.1. There are fixed θ0 ∈ Dφ and ∆ ∈ θ′0(H) such that as n→∞,

rn{θn(0)− θ0} → ∆ . (2.25)

Assumption 2.3.2. The map φ : Dφ ⊂ D → E, where E is a Banach space with norm

‖ · ‖E, is Hadamard directionally differentiable at θ0.
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In the i.i.d. setup, Assumption 2.3.1 is automatically satisfied with θn(0) = θ0 ≡

θ(P ), ∆ = 0, and {rn} any sequence. Assumption 2.3.2 simply formalizes the appropriate

notion of directional differentiability of φ. It is worth noting that directional differentiability

is only assumed at θ0. This Hadamard directional differentiability condition, together with

Assumptions 2.2.2, 2.2.3, and 2.3.1, allows us to deduce weak limits of rn{φ(θ̂n)−φ(θn(h))}

under {Pn,h}.

Next, minimaxity analysis necessitates the specification of a loss function or a family

of loss functions. As recommended by Strasser (1982), we shall consider a collection of loss

functions and they are specified as follows:

Assumption 2.3.3. The loss function ` : E → R+ is such that `M ≡ ` ∧M is Lipschitz

continuous, i.e. for each M > 0, there is some constant C`,M > 0 such that:

|`M (x)− `M (y)| ≤ C`,M‖x− y‖E for all x, y ∈ E . (2.26)

Assumption 2.3.3 includes common loss functions such as quadratic loss, absolute

loss, and quantile loss but excludes the zero-one loss. We emphasize that the symmetry of

` is not needed here. From a technical level, this is because we no longer need Anderson’s

lemma to derive the lower bound of minimax risk. Moreover, we note that Assumption

2.3.3 clearly implies continuity of ` and Lipschitz continuity if ` is bounded.

Given the ability to derive weak limits of rn{φ(θ̂n)−φ(θn(h))}, asymptotic normality

of {Pn,h}, and a loss function `, we are able to obtain the lower bound of local asymptotic

minimax risk as the first main result of this paper.

Theorem 2.3.1. Let (Xn,An, {Pn,h : h ∈ H}) be a sequence of statistical experiments,

and θ̂n a map from the data {Xi}ni=1 into a set Dφ. Suppose that Assumptions 2.2.1, 2.2.2,

2.2.3, 2.3.1, 2.3.2 and 2.3.3 hold. Then it follows that

sup
I⊂fH

lim inf
n→∞

sup
h∈I

En,h[`(rn{φ(θ̂n)− φ(θn(h))})]

≥ inf
u∈D

sup
h∈H

E[`(φ′θ0(G0 + u+ θ′0(h))− φ′θ0(θ′0(h)))] , (2.27)
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where En,h denotes the expectation evaluated under Pn,h.

The lower bound takes a minimax form which in fact is consistent with regular cases

– i.e. when φ is Hadamard differentiable or equivalently φ′θ0 is linear, in which the lower

bound is given by E[`(φ′θ0(G0))] provided that ` is subconvex (van der Vaart and Wellner,

1996). To see this, note that if φ′θ0 is linear, then

inf
u∈D

sup
h∈H

E[`(φ′θ0(G0 + u+ θ′0(h))− φ′θ0(θ′0(h)))]

= inf
u∈D

E[`(φ′θ0(G0) + φ′θ0(u))] = E[`(φ′θ0(G0))] ,

where the last step is by Anderson’s lemma since ` is subconvex and φ′θ0(G0) is Gaussian

in view of φ′θ0 being continuous and linear. Thus, the minimax form in (2.27) is caused

entirely by the nonlinearity of φ′θ0 . We note also that the lower bound in Theorem 2.3.1 is

consistent with that in Song (2014) for the special class of parameters studied there.

If the lower bound in (2.27) is infinite, then any estimator is “optimal”. One should

then change the loss function or work with an alternative optimality criteria so that the

problem becomes nontrivial. Given a particular loss function, finiteness of the lower bound

hinges on the nature of both the model and the parameter being estimated. For the sake

of finiteness of the lower bound, we thus require the derivative φ′θ0 satisfy:

Assumption 2.3.4. The derivative φ′θ0 is Lipschitz continuous, i.e. there exists some con-

stant Cφ′ > 0 possibly depending on θ0 such that

‖φ′θ0(z1)− φ′θ0(z2)‖E ≤ Cφ′‖z1 − z2‖D for all z1, z2 ∈ Dφ . (2.28)

Assumption 2.3.4 in fact is satisfied in all of our examples; see Section 2.3.2.1. The

following Lemma shows that Assumption 2.3.4 ensures finiteness of the lower bound in

(2.27) for a class of popular loss functions.

Lemma 2.3.1. Let `(·) = ρ(‖ · ‖E) for some nondecreasing lower semicontinuous function



www.manaraa.com

86

ρ : R+ → R+. If Assumption 2.3.4 holds and E[ρ(Cφ′‖G0‖D)] <∞, then

inf
u∈D

sup
h∈H

E[`(φ′θ0(G0 + u+ θ′0(h))− φ′θ0(θ′0(h)))] <∞ .

The moment condition in Lemma 2.3.1 is easy to verify in practice when combined

with Lipschitz property of ρ (Bogachev, 1998, Theorem 4.5.7) or tail behavior of the CDF

of ‖G0‖E (Davydov et al., 1998, Proposition 11.6) but by no means necessary. If the lower

bound is finite, this would not be a concern in the first place. As another example, if D is

Euclidean, then it suffices that there is some δ > 0 such that

sup
c∈Rm

E[`(φ′θ0(G0 + c)− φ′θ0(c))1+δ] <∞ .

In cases when θ is Euclidean valued – i.e. D = Rm for some m ∈ N, we have a simpler

form of the lower bound in (2.27). This includes semiparametric and nonparametric models

as well as parametric ones; see Examples 2.2.1 and 2.2.2.

Corollary 2.3.1. Let (Xn,An, {Pn,h : h ∈ H}) be a sequence of statistical experiments,

and θ̂n an estimator for the parameter θ : {Pn,h} → Dφ ⊂ D with D = Rm for some m ∈ N.

Suppose that Assumptions 2.2.1, 2.2.2, 2.2.3, 2.3.1, 2.3.2 and 2.3.3 hold. If the efficiency

bound Σ0 ≡ 〈θ̃0, θ̃
ᵀ
0〉 is nonsingular, then it follows that

sup
I⊂fH

lim inf
n→∞

sup
h∈I

En,h[`(rn{φ(θ̂n)− φ(θn(h))})]

≥ inf
u∈Rm

sup
c∈Rm

E[`(φ′θ0(G0 + u+ c)− φ′θ0(c))] . (2.29)

The lower bound in (2.29) is a minimax optimization problem over Rm; in particular,

the supremum is taken over Rm instead of the tangent set. This simply follows from the

facts that the support of G0 is θ′0(H) by Theorem 2.2.1 and that a nondegenerate Gaussian

random variable in Rm has support Rm. As a result, the construction of optimal plug-in

estimators in Section 2.3.3 becomes much easier when θ is Euclidean valued.
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2.3.2.1 Examples Revisited

In this section we explicitly derive the lower bound for each example introduced in

Section 2.2.1.1. For simplicity of illustration, we confine our attention to the simplest i.i.d.

setup. That is, we assume that the sample X1, . . . , Xn is i.i.d. and distributed according to

P ∈ P, and we are interested in estimating φ(θ).

Example 2.2.1 (Continued). Simple algebra reveals that φ′θ is Lipschitz continuous. In

order to compare with previous literature, consider the case when X is bivariate normal

with covariance matrix σ2I2, and take the squared loss function. As shown in Appendix

2.6.2, the lower bounds is given by

inf
u∈R2

sup
c∈R2

E[`(φ′θ0(G0 + u+ c)− φ′θ0(c))]

= inf
u∈R2

sup
c∈R2

E[(max{G(1)
0 + u(1) + c(1),G(2)

0 + u(2) + c(2)} −max{c(1), c(2)})2] = σ2 ,

where G0 ≡ (G(1)
0 ,G(2)

0 ) ∼ N(0, σ2I2), and the infimum is achieved when u = (−∞, 0) and

c = (−∞, c(2)) with c(2) ∈ R arbitrary. In fact, the lower bound can be also achieved

at u = 0 and c = 0. We note that this lower bound is consistent with Song (2014) and

Blumenthal and Cohen (1968b).

Example 2.2.2 (Continued). In this case, it is also easy to see that φ′θ is Lipschitz

continuous. For the squared loss function, the lower bound at the point θ0 with ψ(θ0) = 0

becomes

inf
u∈R2

sup
c∈R2

E[(max{ψ′θ0(G0 + u+ c), 0} −max{ψ′θ0(c), 0})2] ,

where G0 is the efficient Gaussian limit for estimating θ0.

Example 2.2.3 (Continued). In this example, it can be shown that φ′θ is Lipschitz
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continuous. For the loss function `(z) = ‖z‖∞, the lower bound becomes

inf
u(1),u(2)∈`∞(R)

sup
h(1),h(2)∈H

{E[‖(G(1)
0 + u(1))1B1 + (G(2)

0 + u(2))1B2

+ max{G(1)
0 + u(1) + h(1),G(2)

0 + u(2) + h(2)}1B0 −max{h(1), h(2)}1B0‖∞]} ,

where H consists of all bounded measurable real valued functions on R with
∫
R h dP = 0,

and (G(1)
0 ,G(2)

0 ) is the efficient Gaussian limit in `∞(R)×`∞(R) for estimating θ0 ≡ (F1, F2).

Example 2.2.4 (Continued). Since Cθ0 is closed and convex, φ′θ0 or equivalently ΠCθ0

is Lipschitz continuous (Zarantonello, 1971, p.241). If the loss function `(·) : L2(T )→ R is

`(z) = ‖z‖2L2 , then the lower bound is finite and given by

inf
u∈L2(T )

sup
h∈H

E[‖ΠCθ0
(G0 + u+ θ′0(h))−ΠCθ0

(θ′0(h))‖2L2 ] ,

where H ≡ {(h1, h2) : h1 ∈ H1, h2 ∈ H2} with15

H1 ≡ {h1 : Z → R : E[h1(Z)] = 0} ,

H2 ≡ {h2 : Y ×Z → R : E[h2(Y, z)] = 0 for a.s. z ∈ Z } ,

G0 is a zero mean Gaussian process in L2(T ) with covariance function Cov(τ1, τ2) ≡

J(τ1)−1Γ(τ1, τ2)J(τ2)−1 in which for fY (y|Z) the density of Y conditional on Z,

J(τ) ≡ c′E[fY (Z ′β(τ)|Z)ZZ ′] , ∀ τ ∈ T ,

Γ(τ1, τ2) ≡ E[(τ1 − 1{Y ≤ Z ′β(τ1)})(τ2 − 1{Y ≤ Z ′β(τ2)})ZZ ′] , ∀ τ1, τ2 ∈ T ,

15see Severini and Tripathi (2001). Technically, H here is not the tangent set; however, every element in
the tangent set can be written as a unique decomposition involving some pair in H. This shouldn’t bother
us since tangent set per se is not of our interest.
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and,

θ′0(h)(τ) ≡ −J(τ)−1

∫
c′z1{y ≤ z′β(τ)}h1(y, z)P (dy, dz)

− J(τ)−1

∫
c′z(1{y ≤ z′β(τ)} − τ)h2(z)P (dy, dz) .

For a detailed discussion on the efficient estimation of θ, see Lee (2009, Theorem 3.1).

2.3.3 Attainability via Construction

Having established the lower bounds as in Theorem 2.3.1 and Corollary 2.3.1, we

now proceed to show the attainability of the bounds by developing a general procedure of

constructing optimal plug-in estimators. The lower bounds in (2.27) and (2.29) suggest that

an optimal plug-in estimator is of the form φ(θ̂n + ûn/rn) where ûn is an estimator of the

optimal noise term in Theorem 2.2.1 – i.e. ûn should be an estimator of the minimizer(s)

in the lower bounds. We deal with infinite dimensional D first in order to accommodate

Examples 2.2.3 and 2.2.4, and then specialize to Euclidean D.

Recall from Theorem 2.3.1 that the lower bound for the local asymptotic minimax

risk is given by

inf
u∈D

sup
h∈H

E[`(φ′θ0(G0 + u+ θ′0(h))− φ′θ0(θ′0(h)))] . (2.30)

If the objective function in (2.30) were known, we would pick the optimal correction term

by solving a minimax optimization problem. However, this is not the case since there are

four unknown objects here: the law of the efficient Gaussian component G0, the derivatives

φ′θ0 and θ′0, and the space H. We thus work with the sample analog of (2.30) by replacing

G0, φ′θ0 , θ′0, and H with their sample counterparts.

We shall assume that the law of G0 can be estimated by bootstrap or simulation.

Specifically, let θ̂n be an efficient estimator of θ, and θ̂∗n a bootstrapped version of it – i.e.

θ̂∗n is a function mapping the data {Xi}ni=1 and random weights {Wi} that are independent

of {Xi} into the domain Dφ of φ. This abstract definition suffices for encompassing the
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nonparametric, Bayesian, block, score, and weighted bootstrap as special cases. The hope

is then that the limiting law of rn{θ̂n − θ0} can be consistently estimated by the (finite

sample) law of rn{θ̂∗n − θ̂n}, which necessitates a metric that measures distances between

probability measures. Since the law G0 is tight and hence separable, we may employ the

bounded Lipschitz metric dBL introduced by Dudley (1966, 1968): for two Borel probability

measures L1 and L2 on D, define

dBL(L1, L2) ≡ sup
f∈BL1(D)

|
∫
f dL1 −

∫
f dL2| ,

where recall that BL1(D) is the set of bounded and Lipschitz continuous functions as defined

in (??). We may now measure the distance between the law of Ĝ∗n ≡ rn{θ̂∗n− θ̂n} conditional

on {Xi} and the limiting law G0 of rn{θ̂n − θ0} by

dBL(Ĝ∗n,G0) = sup
f∈BL1(D)

|E[f(rn{θ̂∗n − θ̂n})|{Xi}]− E[f(G0)]| . (2.31)

Employing the distribution of rn{θ̂∗n − θ̂n} conditional on the data to approximate the

distribution of G0 is then asymptotically justified if their distance, equivalently (2.31),

converges in probability to zero.

The estimation of θ′0 can be done by analogy principle since the derivative θ′0 typically

takes the form θ′0 ≡ θ′0(P ), that is, we may estimate θ′0 by θ̂′n = θ′0(Pn) with Pn the

empirical measure. Estimation of the derivative φ′θ0 is trickier. In this regard, we impose

sufficient conditions so as to meet Assumption 3.3 in Fang and Santos (2014). The following

assumption formalizes our discussion so far.

Assumption 2.3.5. (i) Ĝ∗n : {Xi,Wi}ni=1 → Dφ with {Wi} independent of {Xi} satisfies

supf∈BL1(D) |E[f(Ĝ∗n)|{Xi}]− E[f(G0)]| = op(1) under {Pn,0}.

(ii) θ̂′n : H → D depends on {Xi} and satisfies ‖θ̂′n(ĥn) − θ′0(h)‖D
p−→ 0 under {Pn,0}

whenever ‖ĥn − h‖H
p−→ 0 under {Pn,0} with ĥn : {Xi} → H.

(iii) φ̂′n : D → E depends on {Xi} satisfying (a) for any z ∈ D, φ̂′n(z) is consistent for

φ′θ0(z) – i.e. ‖φ̂′n(z)− φ′θ0(z)‖E
p−→ 0 under {Pn,0}; and (b) there is some deterministic
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constant Cφ̂′ such that ‖φ̂′n(z1)− φ̂′n(z2)‖E ≤ Cφ̂′‖z1− z2‖D outer almost surely for all

z1, z2 ∈ D.

Assumption 2.3.5(i) is simply a bootstrap consistency condition on Ĝ∗n for the tar-

get law of G0, including Song (2014)’s simulation method as a special case. Assumption

2.3.5(ii) imposes a weak consistency condition on the estimator θ̂n. One might require θ̂′n

be consistent in the sense that ‖θ̂′n−θ′0‖op
p−→ 0 where ‖ · ‖op is the operator norm. However,

such an assumption is too restrictive for a Glivenko-Cantelli argument to hold since the op-

erator norm is a supremum taken over all h ∈ H with ‖h‖H ≤ 1. The pointwise consistency

condition on φ̂′n in Assumption 2.3.5(iii)-(a) is a minimal requirement, while Assumption

2.3.5(iii)-(b) imposes Lipschitz continuity on φ̂′n, a condition inherited from φ′θ0 as in As-

sumption 2.3.4. Assumptions 2.3.5(iii)-(a) and -(b) together imply that φ̂′n converges in

probability to φθ0 uniformly over all δ-enlargement of compact sets in D, a condition that

has been employed in Fang and Santos (2014) to construct a valid inference procedure for

the parameter φ(θ).

We next deal with approximating the spaces H and D as needed to construct an

analog to the bound (2.30). To understand the unknown nature of H, consider the i.i.d.

setup in which case H ≡ Ṗ0 where Ṗ0 is the tangent set as defined in Remark 2.2.2. In

these settings, it is common that Ṗ0 is equal to the largest possible tangent set L2
0(P ) ≡

{h ∈ L2(P ) :
∫
hdP = 0}, which depends on the unknown probability measure P . It is

worth noting that L2
0(P ) can be viewed as the projection of L2(P ) onto the complement

of the subspace of constant functions. In fact, this projection nature of Ṗ0 is prevalent in

efficient estimation (Bickel et al., 1993), an insight helpful to the estimation of H.

Since both H and D are infinite dimensional, we need to approximate H and D by

sequences of sieve spaces, which typically consist of compact subsets or finite dimensional

subspaces that grow dense in H and D. Consider the space H first. If we have a “basis”

{gm} for Ṗ0, then we may approximate H by finite dimensional subspaces constructed

from {gm}. For example, the space C0
c (Rdx) of mean zero continuous functions on Rdx

with compact support is dense in L2
0(P ); by the Stone-Weierstrass theorem, the set of

polynomial functions are in turn dense in C0
c (Rdx). Thus, following Chamberlain (1987)
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who approximates the efficiency bound in models defined by conditional moment restrictions

based on polynomials, we may take the polynomials, properly projected or truncated, as

a complete sequence in H. As for the space D over which the infimum is taken, we may

employ linear sieves as approximation. These being said, we assume the following:

Assumption 2.3.6. (i) {gm}∞m=1 ⊂ H is complete in the sense that for each h ∈ H and

ε > 0, there exists α1, . . . , αm such that ‖h −
∑m

j=1 αjgj‖H < ε; (ii) for each m ∈ N,

ĝm : {Xi} → H satisfies ‖ĝm − gm‖H
p−→ 0 under {Pn,0}; (iii) {ψk}∞k=1 ⊂ D is complete.

Assumption 2.3.6(i) formalizes the approximation property of {gm}, in a way like

the Schauder basis except that the representation coefficients αj might not be unique, while

Assumption 2.3.6(iii) is a similar approximation condition imposed on {ψk}. Assumption

2.3.6(ii) requires that {gm} be estimated by a sequence {ĝm} of random variables to accom-

modate the unknown nature of H.

Given the availability of complete sequences {gm} and {ψk} in H and D respectively,

we may approximate the lower bound (2.30) by

min
v∈Kk

τk

max
c∈Km

λm

E[`(φ′θ0(G0 + (ψk)ᵀv + θ′0(gm)ᵀc)− φ′θ0(θ′0(gm)ᵀc))] , (2.32)

where Kk
τk

and Km
λm

are balls in Rk and Rm respectively as defined in the beginning of

Section 2.2.1, {λm} and {τk} are sequences that diverge to infinity as m, k →∞ respectively,

and θ′0(gm) ≡ (θ′0(g1), . . . , θ′0(gm))ᵀ. Heuristically, (2.32) is the bound for the parametric

submodel whose tangent set is {cᵀgm : c ∈ Km
λm
} and noise term v is restricted to be

bounded in norm by τk. As the approximation indices m, k increase to infinity, (2.32)

converges to the lower bound (2.30). With gm, G0, θ′0 and φ′θ0 in (2.32) replaced by the

corresponding estimates {ĝm}, Ĝ∗n, θ̂′n and φ̂′n, the bound (2.32) can in turn be estimated

by

min
v∈Kk

τk

max
c∈Km

λm

E[`(φ̂′n(Ĝ∗n + (ψk)ᵀv + θ̂′n(ĝm)ᵀc)− φ̂′n(θ̂′n(ĝm)ᵀc))|{Xi}] , (2.33)

where θ̂′n(ĝm) ≡ (θ̂′n(ĝ1), . . . , θ̂′n(ĝm))ᵀ, and the expectation is evaluated with respect to the
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bootstrap weights {Wi}ni=1 holding {Xi}ni=1 fixed. For notational simplicity, define

B̂m(v) ≡ max
c∈Km

λm

E[`(φ̂′n(Ĝ∗n + (ψk)ᵀv + θ̂′n(ĝm)ᵀc)− φ̂′n(θ̂′n(ĝm)ᵀc))|{Xi}] ,

Ψ̂k,m ≡ {v ∈ Kk
τk

: B̂m(v) ≤ min
v′∈Kk

τk

B̂m(v′) + εn} ,

where εn = op(1) as n → ∞. Here, Ψ̂k,m is the set of minimizers for the sample analog

approximating problem (2.33), allowing negligible computational error εn that tends to zero

in probability.

We are now ready to construct the optimal plug-in estimators. For any v̂n,k,m ∈

Ψ̂k,m, we consider estimating φ(θn(h)) by

φ(θ̂n +
ûn,k,m
rn

) , ûn,k,m ≡ (ψk)ᵀv̂n,k,m , (2.34)

where θ̂n is an efficient estimator of θ – i.e. it satisfies

Assumption 2.3.7. {θ̂n} is an efficient estimator of θ – i.e. for each h ∈ H,

rn{θ̂n − θn(h)}
Ln,h→ G0 in D ,

where G0 is the efficient Gaussian random variable as in Theorem 2.2.1.

Our first construction result shows that the plug-in estimator (2.34) attains the local

asymptotic minimax lower bound (2.30).

Theorem 2.3.2. Suppose that Assumptions 2.2.1, 2.2.2, 2.3.1, 2.3.2, 2.3.3, 2.3.4, 2.3.5,

2.3.6, and 2.3.7 hold. Let {λm} and {τk} be sequences that diverge to infinity as m, k →∞

respectively. If v̂n,k,m ∈ Ψ̂k,m, then

lim sup
k→∞

lim sup
m→∞

sup
I⊂fH

lim sup
n→∞

sup
h∈I

En,h
[
`
(
rn
(
φ(θ̂n +

ûn,k,m
rn

)− φ(θn(h))
))]

≤ inf
u∈D

sup
h∈H

E[`(φ′θ0(G0 + u+ θ′0(h))− φ′θ0(θ′0(h)))] , (2.35)

where ûn,k,m ≡ (ψk)ᵀv̂n,k,m.
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We note that, though unpleasant, the first two lim sup’s over k and m are neces-

sary in general and more importantly are taken after letting n → ∞. The reason is that

minimizers in Ψ̂k,m would possibly diverge to “infinity” as the search ranges Kk
τk

and Km
λm

grow to the whole (noncompact) spaces, rendering the Delta method inapplicable under just

Hadamard directional differentiability. Nonetheless, by restricting u to be in a compact set

Du ⊂ D, for example a class of smooth functions, we are able to remove the first lim sup;

see Section 2.3.3.1.

The general construction of optimal plug-in estimators for infinite dimensional D

is intrinsically complicated. When D is Euclidean – i.e. D = Rm for some m ∈ N, the

computation greatly simplifies. Recall that by Corollary 2.3.1, the lower bound in this case

is given by

inf
u∈Rm

sup
c∈Rm

E[`(φ′θ0(G0 + u+ c)− φ′θ0(c))] . (2.36)

Comparing (2.36) with (2.30), it is clear that we can dispense with the computation burden

of estimating H and θ′0. Instead we now only have to estimate the directional derivative

φ′θ0 and the law of G0. Following the same idea as before, we therefore define

B̂λ(u) ≡ max
c∈Km

λ

E[`(φ̂′n(Ĝ∗n + u+ c)− φ̂′n(c))|{Xi}] ,

Ψ̂τ,λ ≡ {u ∈ Km
τ : B̂λ(u) ≤ min

u′∈Km
τ

B̂λ(u′) + εn} ,

where εn = op(1) as n→∞. As expected, if we pick ûn,τ,λ ∈ Ψ̂τ,λ, then

φ
(
θ̂n +

ûn,τ,λ
rn

)
(2.37)

will be an optimal plug-in estimator, as confirmed by the following theorem.

Theorem 2.3.3. Let D = Rm for some m ∈ N and Σ0 ≡ 〈θ̃0, θ̃
ᵀ
0〉 be nonsingular. Suppose
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that Assumptions 2.2.1, 2.2.2, 2.3.1, 2.3.2, 2.3.3, 2.3.4, 2.3.5(i)(iii), and 2.3.7 hold. Then

lim sup
τ→∞

lim sup
λ→∞

sup
I⊂fH

lim sup
n→∞

sup
h∈I

En,h
[
`
(
rn
(
φ(θ̂n +

ûn,τ,λ
rn

)− φ(θn(h))
))]

≤ inf
u∈Rm

sup
c∈Rm

E[`(φ′θ0(G0 + u+ c)− φ′θ0(c))] . (2.38)

It is worth noting that the optimal plug-in estimators (2.34) and (2.37) depend,

through the correction terms ûn,m,k and ûn,τ,λ respectively, on the choice of the loss func-

tion `, which in turn hinges on the nature of the problem at hand and practitioners’ risk

preference.

2.3.3.1 Smoothed Optimal Plug-in Estimators

By letting k,m → ∞ and τ, λ → ∞ after n tends to infinity in the lower bounds,

one essentially confines the minimizers ûn,m,k and ûn,τ,λ to compact subsets. We may

alternatively start with compact (possibly infinite dimensional) spaces and base our analysis

therein.

In the literature of nonparametric and semi-(non)parametric methods, compactness

can be obtained by attaching an appropriate norm different from the one that defines the

space under consideration (Gallant and Nychka, 1987). For detailed discussions we refer

the readers to Gallant and Nychka (1987), Newey and Powell (2003) and Santos (2012). We

instead impose the following high level conditions.

Assumption 2.3.8. (i) Du ⊂ D is compact; (ii) {Dk}∞k=1 with Dk ⊂ Du for each k ∈ N

is a sequence of compact sieves satisfying for any u ∈ Du, there exists uk ∈ Dk such that

‖uk − u‖D → 0 as k →∞.

Suppose that we are interested in the following restricted version of lower bound:

min
u∈Du

sup
h∈H

E[`(φ′θ0(G0 + u+ θ′0(h))− φ′θ0(θ′0(h)))] , (2.39)

which is equal to the bound (2.30) if the infimum in the latter is attained in Du. In turn,
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(2.39) can be approximated by

min
u∈Du

max
c∈Km

λm

E[`(φ′θ0(G0 + u+ θ′0(gm)ᵀc)− φ′θ0(θ′0(gm)ᵀc))] , (2.40)

where λm →∞ as m→∞. Replacing gm, G0, θ′0 and φ′θ0 in (2.40) by their corresponding

estimates {ĝm}, Ĝ∗n, θ̂′n and φ̂′n, and approximating Du by the sequence of compact sieves

{Dk}, we may in turn estimate the bound (2.40) by considering

B̂m(u) ≡ max
c∈Km

λm

E[`(φ̂′n(Ĝ∗n + u+ θ̂′n(ĝm)ᵀc)− φ̂′n(θ̂′n(ĝm)ᵀc))|{Xi}] ,

Ψ̂m ≡ {u ∈ Dkn : B̂m(u) ≤ min
u′∈Dkn

B̂m(u′) + εn} ,

where εn = op(1) as n→∞. Notice that the set Ψ̂m of minimizers of B̂m(u) is obtained on

the approximating space Dkn , though we have suppressed the dependence of Ψ̂m on n for

notational simplicity.

Now take arbitrary ûn,m ∈ Ψ̂m and define the plug-in estimator

φ(θ̂n +
ûn,m
rn

) . (2.41)

Optimality of (2.41) in the sense of local asymptotic minimaxity is confirmed as follows.

Theorem 2.3.4. Suppose that Assumptions 2.2.1, 2.2.2, 2.3.1, 2.3.2, 2.3.3, 2.3.4, 2.3.5,

2.3.6(i)(ii), 2.3.7, and 2.3.8 hold. Let ûn,m ∈ Ψ̂m. If λm, kn →∞ as m,n→∞ respectively,

then

lim sup
m→∞

sup
I⊂fH

lim sup
n→∞

sup
h∈I

En,h
[
`
(
rn
(
φ(θ̂n +

ûn,m
rn

)− φ(θn(h))
))]

≤ inf
u∈Du

sup
h∈H

E[`(φ′θ0(G0 + u+ θ′0(h))− φ′θ0(θ′0(h)))] . (2.42)

We note that similar as the sieve approximation for D, one may also consider con-

struction based on a general sequence of compact sieves ofH. While one might have different

tastes on the choice of compact sieves for D – for instance, one might choose different de-
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grees of smoothness which in turn directly affects the smoothness of the correction term ûn,

approximation for H is purely for computational purposes and has more indirect effect on

ûn. We thus skip the general approximation for H here.

2.3.3.2 Examples Revisited

We now turn to Examples 2.2.1-2.2.4. For the sake of brevity, we omit the bootstrap

procedure, and instead focus on verifying Assumptions 2.3.5(ii)(iii), 2.3.6, and 2.3.7. For

Examples 2.2.1 and 2.2.2, there is no need to estimate H and θ′0; see Corollary 2.3.1.

Example 2.2.1 (Continued). The sample mean Xn serves as an efficient estimator of

θ. Denote ĵ∗ = arg maxj∈{1,2} X̄
(j) and pick tn ↑ ∞ satisfying tn/

√
n ↓ 0. Define

φ̂′n(z) =


z(ĵ∗) if |X̄(1) − X̄(2)| > tn

max{z(1), z(2)} if |X̄(1) − X̄(2)| ≤ tn
. (2.43)

Then it is straightforward to verify that φ̂′n is Lipschitz continuous and pointwise consistent.

Example 2.2.2 (Continued). The efficient estimation of θ0 in this example can be

conducted in the conditional moment restriction framework (Newey, 1993). Then we may

estimate φ′θ0 by

φ̂′n(z) = ψ′
θ̂n

(z)1{ψ(θ̂n) > tn}+ max{ψ′
θ̂n

(z), 0}1{|ψ(θ̂n)| ≤ tn} ,

where θ̂n is an efficient estimator of θ0, and tn is a sequence specified as in Example 2.2.1.

Example 2.2.3 (Continued). Let F̂1 and F̂2 be the empirical CDFs of F1 and F2 re-

spectively. It is known that empirical CDFs F̂1 and F̂2 are efficient in estimating F1 and

F2 respectively (van der Vaart and Wellner, 1996), and hence (F̂1, F̂2) is efficient in esti-

mating (F1, F2) in the product space `∞(R)× `∞(R) (van der Vaart, 1991b). The form of

the derivative φ′θ0 as in (2.22) suggests a natural estimator for it. Define B̂1 ≡ {x ∈ R :

F̂1n(x)− F̂2n(x) > tn}, B̂2 ≡ {x ∈ R : F̂2n(x)− F̂1n(x) > tn}, and B̂0 ≡ {x ∈ R : |F̂1n(x)−
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F̂2n(x)| ≤ tn} where tn is again as in Example 2.2.1. Let φ̂′n : `∞(R)× `∞(R)→ `∞(R) be

defined by

φ̂′n(z) = z(1)1B̂1
+ z(2)1B̂2

+ max{z(1), z(2)}1B̂0
.

Then φ̂′n is Lipschitz continuous and pointwise consistent.

In this example, we have to estimate θ′0 and a basis {gj} of L2
0(P ), as well as the

derivative φ′θ0 and the law of G0. By Section 3.11.1 in van der Vaart and Wellner (1996),

for each h ≡ (h1, h2) ∈ H ×H with H being the set of bounded measurable functions on

R,

θ′0(h)(v) =
( ∫ v

−∞
h1(t)P1(dt),

∫ v

−∞
h2(t)P2(dt)

)
.

Thus, we may take the following estimator of θ′0:

θ̂′n(h)(v) =
( ∫ v

−∞
h1(t)P1n(dt),

∫ v

−∞
h2(t)P2n(dt)

)
.

As to Assumption 2.3.6(ii), if {g(i)
m } is complete in L2(Pi) with i = 1, 2, then we may take

g
(1)
1 (v)− 1

n

n∑
i=1

g
(1)
1 (B1i) , g

(1)
2 (v)− 1

n

n∑
i=1

g
(1)
2 (B1i) , . . . ,

g
(2)
1 (v)− 1

n

n∑
i=1

g
(2)
1 (B2i) , g

(2)
2 (v)− 1

n

n∑
i=1

g
(2)
2 (B2i) , . . . ,

where {B1i}ni=1 and {B2i}ni=1 are bids from auctions 1 and 2 respectively; see Lemma 2.6.9.16

In this example, since functions in `∞(R) can be rather irregular, one might want to follow

the compact version of construction, for instance, let Du be a class of smooth R2-valued

functions. For concrete constructions, see Gallant and Nychka (1987), Newey and Powell

(2003), and Santos (2012).

Example 2.2.4 (Continued). Since β(·) : T → R can be efficiently estimated by the

quantile regression process β̂n(·), we thus conclude that θ̂n ≡ c′β̂n(·) is efficient in estimating

θ0 (van der Vaart, 1991b). As to estimation of the derivative φ′θ0 , we follow the approach

16For example, if Pi satisfies
∫
eM|v| Pi(dv) < ∞ for all M ∈ (0,∞), then {1, v, v2, . . .} is complete in

L2(Pi).
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pursued by Hong and Li (2014) and propose the following estimator:

φ̂′n(z) = t−1
n {ΠΛ(θ̂n + tnz)−ΠΛ(θ̂n)} ,

where tn satisfies tn → 0 and tn
√
n→∞ as n→∞.17 The derivative θ′0 can be estimated

as follows:

θ̂′n(h) ≡ −Ĵ(τ)−1

∫
c′z1{y ≤ z′β̂(τ)}h1(y, z)Pn(dy, dz)

− Ĵ(τ)−1

∫
c′z(1{y ≤ z′β̂(τ)} − τ)h2(z)Pn(dy, dz) ,

where Ĵ(τ) is constructed as in Angrist et al. (2006):

Ĵ(τ) ≡ 1

2nκn

n∑
i=1

1{|Yi − Z ′iβ̂(τ)| ≤ κn}ZiZ ′i ,

where κn satisfies κn → 0 and κ2
nn → ∞. A complete sequence in H1 can be estimated

similarly as in Example 2.2.3. As to H2, if {gj(y, z)} is complete in L2(Y ×Z ), then we

may take

g1(y, z)− 1

n

n∑
i=1

g1(Yi, z) , g2(y, z)− 1

n

n∑
i=1

g2(Yi, z) , . . . .

A complete sequence {ψk} in L2(T ) can be a sequence of polynomials, while the compact

space Du can be chosen to be a class of smooth functions in L2(T ) as in Example 2.2.3.

2.4 Empirical Application

In this section, we apply the theory developed in previous sections to the estimation

of the effect of Vietnam veteran status on the quantiles of civilian earnings (Angrist, 1990).

Since certain types of men are more likely to service in the military, making the veteran

status endogenous, a conventional quantile regression method is inappropriate to recover

17Song (2014, 2015) essentially took the same approach.



www.manaraa.com

100

the casual relationship. Following Angrist (1990), we employ the Vietnam draft lottery

eligibility indicator as an instrument for veteran status. In particular, we apply the instru-

mental quantile regression framework developed by Chernozhukov and Hansen (2005, 2006)

to the Current Population Survey data set as in Chernozhukov et al. (2010), which consists

of four variables: annual labor real earnings, weakly real wage, veteran status indicator with

value 1 for veterans, and Vietnam draft lottery eligibility indicator as an instrument with

value 1 for eligible men. As in Chernozhukov et al. (2010), we focus on the annual labor

earnings throughout.

Let Y denote the annual labor real earnings, D the veteran status, and Z the Viet-

nam draft lottery eligibility. Under instrument independence and rank similarity, Cher-

nozhukov and Hansen (2005) showed that the quantile regression coefficients β(τ) for vet-

erans can be identified by the following conditional moment restriction:

E[(τ − 1{Y ≤ β(τ)D})|Z] = 0 a.s., ∀ τ ∈ (0, 1) , (2.44)

much like the counterpart in mean regression models. Chernozhukov and Hansen (2006)

developed the instrumental variable quantile regression based on restriction (2.44), which

can be viewed as a quantile regression analog of two stage least squares.

Unfortunately, since β(τ) is estimated pointwise, there is in general no guarantee

that the quantile function β̂(·) is monotonically increasing. To circumvent the nonmono-

tonicity when estimating the structural quantile functions of earnings, we therefore employ

the metric projection operator introduced in Example 2.2.4. In estimating the correction

terms, we take polynomials as basis functions for D ≡ L2(T ) and H, and set m = 4, k = 3.

The quantile index set T is taken to be the grid on [0.25, 0.75] with increment 0.001, while

the number of bootstrap repetitions is set to be two hundred. As for the estimation of the

Hadamard directional derivative, we follow the same approach as in Example 2.2.4 and set

tn = n−1/3. The correction terms are estimated relative to the L2 loss function.

In Figures 2.1 and 2.2 we show the structural quantile functions of earnings for vet-
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Figure 2.1: Structural Quantile Functions of Earnings for Veterans
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Figure 2.2: Structural Quantile Functions of Earnings for Non-Veterans
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erans and non-veterans respectively, as well as their optimal projected counterparts with

correction terms. In both figures, the original quantile functions exhibit obvious nonmono-

tonicity at certain regions, especially for veterans. The projected counterparts are by con-

struction monotone and optimal in terms of local asymptotic minimaxity. We note signifi-

cant differences between original quantile curve and the optimal projected one for veterans.

For example, the median of the annual earnings for veterans is 9,819 dollars according to

the original estimate and 9,929 dollars according to the projected estimate. The maximal

difference of 1,767 dollars occurs at the 0.725 quantile. In contrast, we find less difference

between the original structural quantile function and the optimal projected counterpart for

the non-veterans, with the maximal gap being 403 dollars at the 0.725 quantile.

2.5 Conclusion

In this paper, we have derived the local asymptotic minimax lower bound for a class

of plug-in estimators of directionally differentiable parameters, which arise in a large class

of econometric problems. The employment of minimaxity criterion, although perhaps not

fully necessary, seems to the most suitable one for our purposes. The derived lower bound is

intrinsically complicated. Nonetheless, we have been able to present a general construction

procedure to show attainability of the lower bound.

2.6 Appendix

2.6.1 Proofs of Main Results

Proof of Theorem 2.3.1: For each finite subset I ⊂ H, we have

lim inf
n→∞

sup
h∈I

En,h[`(rn{φ(θ̂n)− φ(θn(h))})]

≥ sup
h∈I

lim inf
n→∞

En,h[`(rn{φ(θ̂n)− φ(θn(h))})] . (2.45)
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By Assumption 2.3.3, ` is continuous and positive. In turn, Lemma 2.6.1 allows us to invoke

the portmanteau theorem to conclude that

lim inf
n→∞

En,h[`(rn{φ(θ̂n)− φ(θn(h))})]

≥ E[`(φ′θ0(G+ θ′0(h) + ∆)− φ′θ0(θ′0(h) + ∆))] . (2.46)

Combining results (2.45) and (2.46) we thus have

lim inf
n→∞

sup
h∈I

En,h[`(rn{φ(θ̂n)− φ(θn(h))})]

≥ sup
h∈I

E[`(φ′θ0(G+ θ′0(h) + ∆)− φ′θ0(θ′0(h) + ∆))] . (2.47)

Taking supremum on both sides in (2.47) over all finite I ⊂ H yields that

sup
I⊂fH

lim inf
n→∞

sup
h∈I

En,h[`(rn{φ(θ̂n)− φ(θn(h))})]

≥ sup
I⊂fH

sup
h∈I

E[`(φ′θ0(G+ θ′0(h) + ∆)− φ′θ0(θ′0(h) + ∆))]

= sup
h∈H

E[`(φ′θ0(G+ θ′0(h) + ∆)− φ′θ0(θ′0(h) + ∆))]

= sup
h∈H

E[`(φ′θ0(G+ θ′0(h))− φ′θ0(θ′0(h)))] , (2.48)

where the last equality is due to the fact that ∆ ∈ θ′0(H) by Assumption 2.3.1 and the fact

that H is linear by Assumption 2.2.1(i).

In view of (2.48) and the desired lower bound in (2.27), it suffices to show that,

sup
h∈H

E[`(φ′θ0(G+ θ′0(h))− φ′θ0(θ′0(h)))]

≥ inf
u∈D

sup
h∈H

E[`(φ′θ0(G0 + u+ θ′0(h))− φ′θ0(θ′0(h)))] . (2.49)

Towards this end, we follow the idea of Song (2014) but, instead of employing the purification

theorem initially developed by Dvoretzky et al. (1950, 1951), we appeal to a more generalized

version in Feinberg and Piunovskiy (2006) and hence are able to simplify the proof that
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would be otherwise involved.

Since H is separable by Assumption 2.2.1(i), we may pick a sequence {hj}∞j=1 that

is dense in H. By positivity and continuity of ` implied by Assumption 2.3.3 and continuity

of θ′0 and φ′θ0 implied by Assumptions 2.2.2 and 2.3.4, we may conclude by Fatou’s lemma

that E[`(φ′θ0(G + θ′0(h)) − φ′θ0(θ′0(h)))] is lower semicontinuous in h. It follows by Lemma

2.6.5 that

sup
h∈H

E[`(φ′θ0(G+ θ′0(h))− φ′θ0(θ′0(h)))] = sup
j∈N

E[`(φ′θ0(G+ θ′0(hj))− φ′θ0(θ′0(hj)))] . (2.50)

Fix J ∈ N. For j = 1, . . . , J , write ρ(z, u) = (ρ1(z, u), . . . , ρJ(z, u))ᵀ where

ρj(z, u) = E[`(φ′θ0(G0 + u+ θ′0(hj))− φ′θ0(θ′0(hj)))]z .

By Assumptions 2.2.1, 2.2.2 and 2.2.3, Theorem 2.2.1 applies so that we may write G d
=

G0 +U, where G0 is the efficient Gaussian component and U is the noise term independent

of G0. Denote the distribution of U by Q. For fixed λ > 1, let Z follow the uniform

distribution νλ supported on [1, λ]. By Theorem 1 in Feinberg and Piunovskiy (2006), there

is a measurable map u∗ : [1, λ]→ D such that

∫
R

∫
D
ρ(z, u)Q(du)νλ(dz) =

∫
R
ρ(z, u∗(z)) νλ(dz) ,

which in turn implies that, for all j = 1, . . . , J ,

1 + λ

2

∫
D
E[`(φ′θ0(G0 + u+ θ′0(hj))− φ′θ0(θ′0(hj)))]Q(du)

=

∫
R
E[`(φ′θ0(G0 + u∗(z) + θ′0(hj))− φ′θ0(θ′0(hj)))]z νλ(dz)

≥
∫ λ

1
E[`(φ′θ0(G0 + u∗(z) + θ′0(hj))− φ′θ0(θ′0(hj)))] νλ(dz) , (2.51)

where the inequality exploits the facts that z ≥ 1 almost everywhere and that ` ≥ 0. By
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change of variable applied to the right hand side of (2.51), we have for all j = 1, . . . , J ,

1 + λ

2

∫
D
E[`(φ′θ0(G0 + u+ θ′0(hj))− φ′θ0(θ′0(hj)))]Q(du)

≥
∫ 1

0
E[`(φ′θ0(G0 + u∗((λ− 1)y + 1) + θ′0(hj))− φ′θ0(θ′0(hj)))] dy . (2.52)

It follows that

1 + λ

2
max

j=1,...,J
E[`(φ′θ0(G+ θ′0(hj))− φ′θ0(θ′0(hj)))]

≥ inf
λ>1

max
j=1,...,J

∫ 1

0
E[`(φ′θ0(G0 + u∗((λ− 1)y + 1) + θ′0(hj))− φ′θ0(θ′0(hj)))] dy

≥ inf
u∈R(u∗)

max
j=1,...,J

∫ 1

0
E[`(φ′θ0(G0 + u+ θ′0(hj))− φ′θ0(θ′0(hj)))] dy

≥ inf
u∈D

max
j=1,...,J

E[`(φ′θ0(G0 + u+ θ′0(hj))− φ′θ0(θ′0(hj)))] , (2.53)

where R(u∗) denotes the range of u∗.

Letting λ ↓ 1 and then J →∞ in (2.53) yields

sup
j∈N

E[`(φ′θ0(G+ θ′0(hj))− φ′θ0(θ′0(hj)))]

≥ inf
u∈D

sup
j∈N

E[`(φ′θ0(G0 + u+ θ′0(hj))− φ′θ0(θ′0(hj)))] . (2.54)

Combining (2.50), (2.54), and the fact that the expectation on the right hand side is also

lower semicontinuous in h by Assumptions 2.2.2, 2.3.2 and 2.3.3, we thus conclude that

sup
h∈H

E[`(φ′θ0(G+ θ′0(h))− φ′θ0(θ′0(h)))]

≥ inf
u∈D

sup
h∈H

E[`(φ′θ0(G0 + u+ θ′0(h))− φ′θ0(θ′0(h)))] , (2.55)

proving (2.49) and hence the Theorem.

Lemma 2.6.1. Let (Xn,An, {Pn,h : h ∈ H}) be a sequence of statistical experiments, and

θ̂n be an estimator for the parameter θ : {Pn,h} → D. If Assumptions 2.2.2, 2.2.3, 2.3.1
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and 2.3.2 hold, then

rn{φ(θ̂n)− φ(θn(h))}
Ln,h→ φ′θ0(G+ θ′0(h) + ∆)− φ′θ0(θ′0(h) + ∆) (2.56)

for every h ∈ H.

Proof: Rewrite

rn{φ(θ̂n)− φ(θn(h))} = rn{φ(θ̂n)− φ(θ0)} − rn{φ(θn(h))− φ(θ0)} . (2.57)

By Assumptions 2.2.3, 2.2.2, and 2.3.1, we have

rn(θ̂n − θ0) = rn{θ̂n − θn(h)}+ rn{θn(h)− θn(0)}+ rn{θn(0)− θ0}
Ln,h→ G+ θ′0(h) + ∆ ,

for every h ∈ H. By Assumption 2.3.2, φ is Hadamard directionally differentiable at θ0

tangentially to D, and hence by the Delta method (Fang and Santos, 2014, Theorem 2.1)

we may conclude that

rn{φ(θ̂n)− φ(θ0)}
Ln,h→ φ′θ0(G+ θ′0(h) + ∆) . (2.58)

On the other hand, Assumptions 2.2.2, and 2.3.1 imply that for all h ∈ H,

rn{θn(h)− θ0} = rn{θn(h)− θn(0)}+ rn{θn(0)− θ0} → θ′0(h) + ∆ ,

whence by Assumption 2.3.2,

rn{φ(θn(h))− φ(θ0)} → φ′θ0(θ′0(h) + ∆) . (2.59)

The Lemma then follows from displays (2.57), (2.58) and (2.59).
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Proof of Lemma 2.3.1: By Assumption 2.3.4, we have

‖φ′θ0(G0 + u+ θ′0(h))− φ′θ0(θ′0(h))‖E ≤ Cφ′‖G0 + u‖D ,

and hence by ρ being nondecreasing

inf
u∈D

sup
h∈H

E[`(φ′θ0(G0 + u+ θ′0(h))− φ′θ0(θ′0(h)))]

= inf
u∈D

sup
h∈H

E[ρ(‖φ′θ0(G0 + u+ θ′0(h))− φ′θ0(θ′0(h))‖E)]

≤ inf
u∈D

E[ρ(Cφ′‖G0 + u‖D)] . (2.60)

For each c ≥ 0, the set Ac ≡ {y : ρ(Cφ′‖y‖D) ≤ c} is clearly symmetric. It is also closed

since if {yn} ⊂ Ac and yn → y, then ρ being lower semicontinuous implies that

ρ(Cφ′‖y‖D) ≤ lim inf
n→∞

ρ(Cφ′‖yn‖D) ≤ c .

Finally, Ac is convex since if y1, y2 ∈ Ac, then for any λ ∈ (0, 1)

ρ(Cφ′‖λy1 + (1− λ)y2‖D) ≤ρ(λCφ′‖y1‖D + (1− λ)Cφ′‖y2‖D)

≤ ρ(max{Cφ′‖y1‖D, Cφ′‖y2‖D}) ≤ c .

Therefore ρ(Cφ′‖ · ‖D) is subconvex. We thus conclude from result (2.60) and Anderson’s

lemma (van der Vaart and Wellner, 1996) that

inf
u∈D

sup
h∈H

E[`(φ′θ0(G0+u+ θ′0(h))− φ′θ0(θ′0(h)))]

≤ inf
u∈D

E[ρ(Cφ′‖G0 + u‖D)] = E[ρ(Cφ′‖G0‖D)] <∞ .

This establishes the Lemma.

Proof of Corollary 2.3.1: By Theorem 2.3.1, we know that the lower bound is given
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by

inf
u∈D

sup
h∈H

E[`(φ′θ0(G0 + u+ θ′0(h))− φ′θ0(θ′0(h)))] . (2.61)

By Assumptions 2.2.2, 2.3.4 and 2.3.3, we may conclude by Fatou’s lemma that the expec-

tation in (2.61) is lower semicontinuous in h. It follows by Lemma 2.6.5 that

inf
u∈D

sup
c∈θ′0(H)

E[`(φ′θ0(G0 + u+ c)− φ′θ0(c))] . (2.62)

Since G0 is Gaussian in D ≡ Rm with nonsingular covariance Σ0, by Theorem 2.2.1 it must

be the case that θ′0(H) = Rm. The Corollary then follows.

Proof of Theorem 2.3.2: Suppose first that the loss function ` is bounded by M > 0.

Fix ε > 0. Then there is some uε ∈ D such that

sup
h∈H

E[`(φ′θ0(G0 + uε + θ′0(h))− φ′θ0(θ′0(h)))]

≤ inf
u∈D

sup
h∈H

E[`(φ′θ0(G0 + u+ θ′0(h))− φ′θ0(θ′0(h)))] +
ε

4
. (2.63)

By Assumptions 2.3.3 and 2.3.4, suph∈H E[`(φ′θ0(G0 +u+θ′0(h))−φ′θ0(θ′0(h)))] is (Lipschitz)

continuous in u. Thus, there is some δ > 0 such that

sup
h∈H

E[`(φ′θ0(G0 + u+ θ′0(h))− φ′θ0(θ′0(h)))]

≤ sup
h∈H

E[`(φ′θ0(G0 + uε + θ′0(h))− φ′θ0(θ′0(h)))] +
ε

4
,

whenever ‖u − uε‖D < δ. By Assumption 2.3.6(iii) and the fact that τk → ∞ as k → ∞,

there is some vk ∈ Kk
τk

such that ‖uk − uε‖D < δ with uk ≡ (ψk)ᵀvk for all k large enough,

which in turn means that

sup
h∈H

E[`(φ′θ0(G0 + uk + θ′0(h))− φ′θ0(θ′0(h)))]

≤ sup
h∈H

E[`(φ′θ0(G0 + uε + θ′0(h))− φ′θ0(θ′0(h)))] +
ε

4
. (2.64)
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Combining results (2.63) and (2.64) we thus have for all k large enough,

inf
v∈Kk

τk

sup
h∈H

E[`(φ′θ0(G0 + (ψk)ᵀv + θ′0(h))− φ′θ0(θ′0(h)))]

≤ sup
h∈H

E[`(φ′θ0(G0 + uk + θ′0(h))− φ′θ0(θ′0(h)))]

≤ inf
u∈D

sup
h∈H

E[`(φ′θ0(G0 + u+ θ′0(h))− φ′θ0(θ′0(h)))] +
ε

2
. (2.65)

Next, for notational simplicity, define

Bm(v) ≡ max
c∈Km

λm

E[`(φ′θ0(G0 + (ψk)ᵀv + θ′0(gm)ᵀc)− φ′θ0(θ′0(gm)ᵀc))] ,

B(v) ≡ sup
h∈H

E[`(φ′θ0(G0 + (ψk)ᵀv + θ′0(h))− φ′θ0(θ′0(h)))] , Ψk,m ≡ arg min
v∈Kk

τk

Bm(v) .

Fix k large enough so that (2.65) holds. By Assumptions 2.3.3 and 2.3.4, it is clear that

both B(v) and Bm(v) for each m ∈ N are continuous functions on Kk
τk

. Moreover, Bm(v)

increasingly converges to B(v) as m → ∞ for each v ∈ Kk
τk

with additional Assumption

2.3.6(i). To see this, fix v ∈ Kk
τk

and pick hε ∈ H such that

B(v)− ε ≤ E[`(φ′θ0(G0 + (ψk)ᵀv + θ′0(hε))− φ′θ0(θ′0(hε)))] ≤ B(v) . (2.66)

By Assumptions 2.2.2, 2.3.3 and 2.3.4, E[`(φ′θ0(G0 + (ψk)ᵀv+ θ′0(h))− φ′θ0(θ′0(h)))] is (Lip-

schitz) continuous in h, and hence by Assumption 2.3.6(i) and the fact that λm → ∞ as

m→∞, we have for all m sufficiently large

E[`(φ′θ0(G0 + (ψk)ᵀv + θ′0(hε))− φ′θ0(θ′0(hε)))] ≤ Bm(v) + ε . (2.67)

Combining previous two displays we obtain B(v)−2ε ≤ Bm(v) ≤ B(v) for all m sufficiently

large. This shows that Bm(v) increasingly converges to B(v) for each v ∈ Kk
τk

. It follows

by Dini’s theorem (Aliprantis and Border, 2006, Theorem 2.66) that Bm → B uniformly on

Kk
τk

. We thus conclude that there is an m0 such that for all m ≥ m0, B(v) ≤ Bm(v) + ε/2
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or equivalently

sup
h∈H

E[`(φ′θ0(G0 + (ψk)ᵀv + θ′0(h))− φ′θ0(θ′0(h)))]

≤ sup
c∈Km

λm

E[`(φ′θ0(G0 + (ψk)ᵀv + θ′0(gm)ᵀc)− φ′θ0(θ′0(gm)ᵀc))] +
ε

2
, (2.68)

for all v ∈ Kk
τk

.

Next, fix an arbitrary subsequence {n`}. For fixed m, k ∈ N, Bm(·) is continuous

on Kk
τk

by Assumptions 2.3.3 and 2.3.4, which, together with compactness of Kk
τk

, implies

that Ψk,m is nonempty and compact by Theorem 2.43 in Aliprantis and Border (2006).

Combination of Lemma 2.6.2 and Lemma 2.6.6 then implies that there exist a further

subsequence {n`j} and some v∗k,m ∈ Ψk,m such that

v̂n`j ,k,m
p−→ v∗k,m , (2.69)

as j → ∞ under {Pn,h} with h ∈ H, for each k,m ∈ N. Result (2.69), together with

Assumptions 2.3.7, 2.2.2, 2.3.1 and 2.3.2, allows us to invoke Slutsky’s theorem and the

Delta method to conclude that

rn`j {φ(θ̂∗n`j
+
ûn`j ,k,m

rn`j
)− φ(θn`j (h))}

Ln`j
,h

→ φ′θ0(G0 + u∗k,m + ∆ + θ′0(h))− φ′θ0(∆ + θ′0(h))

for each h ∈ H, where u∗k,m ≡ (ψk)ᵀv∗k,m. Since ` is bounded and continuous, it follows that

for all m sufficiently large and all k ∈ N,

sup
I⊂fH

lim sup
j→∞

sup
h∈I

En`j ,h[`(rn`j {φ(θ̂n`j +
ûn`j ,k,m

rn`j
)− φ(θn`j (h))})]

= sup
h∈H

E[`(φ′θ0(G0 + (ψk)ᵀv∗k,m + θ′0(h))− φ′θ0(θ′0(h)))]

≤ max
v∈Ψk,m

B(v) ≤ max
v∈Ψk,m

Bm(v) +
ε

2
= inf

v∈Kk
τk

Bm(v) +
ε

2
,

where the first inequality is due to v∗k,m ∈ Ψk,m, the second inequality is by result (2.68),
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while the last equality is by definition of Ψk,m. This implies that for all k large enough,

lim sup
m→∞

sup
I⊂fH

lim sup
j→∞

sup
h∈I

En`j ,h[`(rn`j {φ(θ̂n`j +
v̂n`j ,k,m

rn`j
)− φ(θn`j (h))})]

≤ lim sup
m→∞

inf
v∈Kk

τk

Bm(v) +
ε

2
= inf

v∈Kk
τk

B(v) +
ε

2

≤ inf
u∈D

sup
h∈H

E[`(φ′θ0(G0 + u+ θ′0(h))− φ′θ0(θ′0(h)))] + ε , (2.70)

where the equality follows from the fact that Bm → B uniformly on Kk
τk

, and the last

inequality holds for all k sufficiently large due to (2.65). We thus have

lim sup
k→∞

lim sup
m→∞

sup
I⊂fH

lim sup
j→∞

sup
h∈I

En`j ,h[`(rn`j {φ(θ̂n`j +
v̂n`j ,k,m

rn`j
)− φ(θn`j (h))})]

≤ inf
u∈D

sup
h∈H

E[`(φ′θ0(G0 + u+ θ′0(h))− φ′θ0(θ′0(h)))] + ε .

The theorem then follows for bounded ` by the facts that {n`} and ε are arbitrary. For

general loss functions `, replace ` in the above proof with `M ≡ `∧M and then let M →∞.

Lemma 2.6.2. Suppose that Assumptions 2.2.1, 2.2.2, 2.3.1, 2.3.2, 2.3.3, 2.3.4, 2.3.5,

2.3.6 and 2.3.7 hold. Let v̂n,k,m ∈ Ψ̂k,m. If the loss function ` is bounded, then it follows

that for each k,m ∈ N,

d(v̂n,k,m,Ψk,m)
p−→ 0 , (2.71)

under Pn,h for all h ∈ H.

Proof: Fix k,m ∈ N throughout. For notational simplicity, write ϑ ≡ (vᵀ, cᵀ)ᵀ ∈ Θ ≡

Kk
τk
×Km

λm
and η0 ≡ (θ′0, φ

′
θ0

), and define the function fϑ,η0(·) : D→ R by

fϑ,η0(z) ≡ `(φ′θ0(z + (ψk)ᵀv + θ′0(gm)ᵀc)− φ′θ0(θ′0(gm)ᵀc)) .
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Let η̂n ≡ (θ̂′n, φ̂
′
n) and define

Pfϑ,η0 ≡ E[`(φ′θ0(G0 + (ψk)ᵀv + θ′0(gm)ᵀc)− φ′θ0(θ′0(gm)ᵀc))] ,

Pfϑ,(θ′0,φ̂′n) ≡ E[`(φ̂′n(G0 + (ψk)ᵀv + θ′0(gm)ᵀc)− φ̂′n(θ′0(gm)ᵀc))|{Xi}] ,

Pfϑ,η̂n ≡ E[`(φ̂′n(G0 + (ψk)ᵀv + θ̂′n(ĝm)ᵀc)− φ̂′n(θ̂′n(ĝm)ᵀc))|{Xi}] ,

Pnfϑ,η̂n ≡ E[`(φ̂′n(Ĝ∗n + (ψk)ᵀv + θ̂′n(ĝm)ᵀc)− φ̂′n(θ̂′n(ĝm)ᵀc))|{Xi}] ,

where Pfϑ,(θ′0,φ̂′n), and Pfϑ,η̂n are expectations taken with respect to G0 while holding

{Xi}ni=1 fixed. The ensuing arguments are organized parallel to those of the consistency

result in the theory of the extremum estimation, the only difference being that the set of

population minimizers is possibly a nonsingleton. Therefore, we need to show a uniform

convergence result and an identification condition.

Uniform Convergence: For each ε > 0,

sup
ϑ∈Θ
|Pnfϑ,η̂n − Pfϑ,η0 | = op(1) , (2.72)

under {Pn,0}. In turn, it suffices to show that

sup
ϑ∈Θ
|Pnfϑ,η̂n − Pfϑ,η̂n | = op(1) , (2.73a)

sup
ϑ∈Θ
|Pfϑ,η̂n − Pfϑ,(θ′0,φ̂′n)| = op(1) , (2.73b)

sup
ϑ∈Θ
|Pfϑ,(θ′0,φ̂′n) − Pfϑ,η0 | = op(1) , (2.73c)

under {Pn,0}. Fix ε > 0 and consider (2.73a). Note that for every realization of {Xi}, the

real valued functions

`(φ̂′n(·+ (ψk)ᵀv + θ̂′n(ĝm)ᵀc)− φ̂′n(θ̂′n(ĝm)ᵀc))

are bounded and Lipschitz continuous on D with Lipschitz constant C`Cφ̂′ by Assumptions
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2.3.3 and 2.3.5(iii)-(b). It then follows by Assumption 2.3.5(i) that

sup
ϑ∈Θ
|Pnfϑ,η̂n − Pfϑ,η̂n | ≤ sup

f∈BLa(D)
|E[f(Ĝ∗n)|{Xi}]− E[f(G0)]| = op(1) ,

under {Pn,0}, where a ≡ max{M,C`Cφ̂′} with M being a upper bound of `, proving (2.73a).

Next, consider (2.73b). We have

sup
ϑ∈Θ
|Pfϑ,η̂n − Pfϑ,(θ′0,φ̂′n)| ≤ 2C`Cφ̂′‖θ̂

′
n(ĝm)ᵀc− θ′0(gm)ᵀc‖D

≤ 2C`Cφ̂′λm

m∑
j=1

‖θ̂′n(ĝj)− θ′0(gj)‖D = op(1) ,

under {Pn,0}, where the first inequality is due to Assumptions 2.3.3 and 2.3.5(iii)-(b), and

the second inequality is by Assumptions 2.3.5(ii) and 2.3.6(ii). This shows (2.73b).

Lastly, let us deal with (2.73c). For fixed k,m ∈ N, K1 ≡ {(ψk)ᵀv : v ∈ Kk
τk
} and

K2 ≡ {θ′0(gm)ᵀc : c ∈ Km
λm
} is compact in D by Proposition 4.26 in Folland (1999). Fix

ε, η > 0. Since G0 is tight, there is some compact K0 ⊂ D such that P (G0 /∈ K0) < η/(2M).

Let K ≡ K0 +K1 +K2. Clearly, K ⊂ D is compact. We now have

sup
ϑ∈Θ
|Pfϑ,(θ′0,φ̂′n) − Pfϑ,η0 | ≤ sup

ϑ∈Θ
E[|`(φ̂′n(G0 + (ψk)ᵀv + θ′0(gm)ᵀc)

− φ̂′n(θ′0(gm)ᵀc))− `(φ′θ0(G0 + (ψk)ᵀv + θ′0(gm)ᵀc)− φ′θ0(θ′0(gm)ᵀc))|
∣∣{Xi}]

≤ sup
z∈K

C`‖φ̂′n(z)− φ′θ0(z)‖E + sup
z∈K2

C`‖φ̂′n(z)− φ′θ0(z)‖E + 2M · P (G0 /∈ K0)

≤ op(1) + η ,

where the first inequality is by the triangle inequality, the second is by Assumption 2.3.3,

and the last is by Lemma 2.6.7. This immediately implies (2.73c) and hence we conclude

that (2.72) holds.

Identification Condition: For each ε > 0,

inf
v∈Kk

τk
\Ψεk,m

sup
c∈Km

λm

Pf(v,c),η0
> inf

v∈Kk
τk

sup
c∈Km

λm

Pf(v,c),η0
, (2.74)
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or equivalently, infv∈Kk
τk
\Ψεk,m

Bm(v) > infv∈Kk
τk
Bm(v), where Ψε

k,m ≡ {v ∈ Rk : d(v,Ψk,m) ≤

ε}. To see this, fix ε > 0 and suppose that infu∈Kk
τk
\Ψεk,m

Bm(v) = infu∈Kk
τk
Bm(v). Then

we may pick a sequence {vi} ⊂ Kk
τk
\Ψε

k,m such that

Bm(vi)→ inf
v∈Kk

τk

Bm(v) as i→∞ .

By passing to a subsequence if necessary, we may assume that vi → v∗ as i → ∞ where

v∗ ∈ Kk
τk
\Ψε

k,m. Assumptions 2.3.3 and 2.3.4 imply that Bm(v) is (Lipschitz) continuous

in v and therefore Bm(v∗) = infv∈Kk
τk
Bm(v), meaning that v∗ ∈ Ψk,m. On the other hand,

v∗ ∈ Kk
τk
\Ψε

k,m implies that we may take a sequence {vj} ⊂ Kk
τk
\Ψε

k,m such that vj → v∗

as j →∞, which in turn implies that

d(v∗,Ψk,m) = lim
j→∞

d(vj ,Ψk,m) ≥ ε > 0 ,

a contradiction. Therefore, (2.74) must hold.

We are now in a position to show result (2.71). Fix ε > 0. By result (2.74), there is

some δ > 0 such that whenever v ∈ Kk
τk
\Ψε

k,m we have

Bm(v)−Bm(v∗k,m) ≥ δ , (2.75)

where v∗k,m is any element in Ψk,m. It follows that

Pn,0(d(v̂n,k,m,Ψk,m) > ε) = Pn,0(v̂n,k,m ∈ Kk
τk
\Ψε

k,m) ≤ Pn,0(Bm(v̂n,k,m)−Bm(v∗k,m) ≥ δ)

= Pn,0(Bm(v̂n,k,m)− B̂m(v̂n,k,m) + B̂m(v̂n,k,m)−Bm(v∗k,m) ≥ δ)

≤ Pn,0(Bm(v̂n,k,m)− B̂m(v̂n,k,m) + B̂m(v∗k,m) + εn −Bm(v∗k,m) ≥ δ)

≤ Pn,0(2 sup
v∈Kk

τk

|Bm(v)− B̂m(v)|+ εn ≥ δ)

≤ Pn,0(2 sup
ϑ∈Θ
|Pnfϑ,η̂n − Pfϑ,η0 |+ εn ≥ δ)→ 0 , (2.76)

where the second inequality is by the definition of v̂n,k,m, and the last step is by (2.72) and
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the fact that εn = op(1) as n → ∞. By Assumption 2.2.1(ii), Pn,h and Pn,0 are mutually

contiguous for each h ∈ H; see, for example, Example 6.5 in van der Vaart (1998). Result

(2.71) then follows from (2.76) and Le Cam’s first lemma.

Proof of Theorem 2.3.3: The proof follows closely that of Theorem 2.3.2. Define

B(u) ≡ max
c∈Rm

E[`(φ′θ0(G0 + u+ c)− φ′θ0(c))] ,

Bλ(u) ≡ max
c∈Km

λ

E[`(φ′θ0(G0 + u+ c)− φ′θ0(c))] , Ψτ,λ ≡ arg min
u∈Km

τ

Bλ(u) .

Again, consider first the case when ` is bounded. Fix ε > 0 and τ > 0. By Assumption 2.3.3

and 2.3.4, Bλ(u) and B(u) are both (Lipschitz) continuous in u. Moreover, it is clear that

Bλ(u) ↑ B(u) as λ ↑ ∞ for each u ∈ Km
τ . It then follows by Dini’s theorem that Bλ → B

uniformly on Km
τ so that we may find some λ > 0 with λ ≥ τ if necessary such that

B(u) ≤ Bλ(u) + ε for all u ∈ Km
τ . (2.77)

The rest of the proof is essentially the same as that of Theorem 2.3.3 by employing subse-

quence arguments, in view of Lemma 2.6.3 and Lemma 2.6.6.

Lemma 2.6.3. Suppose that Assumptions 2.2.1, 2.2.2, 2.2.3 2.3.1, 2.3.2, 2.3.3, 2.3.4, and

2.3.5(i)(iii) hold. Let ûn,τ,λ ∈ Ψ̂τ,λ. Further assume that the loss function ` is bounded.

Then for all τ, λ > 0 we have

d(ûn,τ,λ,Ψτ,λ)
p−→ 0 , (2.78)

under Pn,h for each h ∈ H.

Proof: Following the proof of Lemma 2.6.2, it suffices to show a unform convergence

condition and an identification condition. Since the identification condition can be shown

using exactly the same arguments as before, we shall only prove the following: for fixed
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τ, λ > 0,

sup
u∈Km

τ

|B̂λ(u)−Bλ(u)| = op(1) , (2.79)

under Pn,0. To this end, rewrite

sup
u∈Km

τ

|B̂λ(u)−Bλ(u)|

≤ sup
u∈Km

τ

| sup
c∈Km

λ

E[`(φ̂′n(Ĝ∗n + u+ c)− φ̂′n(c))|{Xi}]− sup
c∈Km

λ

E[`(φ̂′n(G0 + u+ c)− φ̂′n(c))|{Xi}]|

+ sup
u∈Km

τ

| sup
c∈Km

λ

E[`(φ̂′n(G0 + u+ c)− φ̂′n(c))|{Xi}]− sup
c∈Km

λ

E[`(φ′θ0(G0 + u+ c)− φ′θ0(c))]| .

(2.80)

For the first term on the right hand side, we have by Assumptions 2.3.3 and 2.3.5(iii)(b):

sup
u∈Km

τ

| sup
c∈Km

λ

E[`(φ̂′n(Ĝ∗n + u+ c)− φ̂′n(c))|{Xi}]− sup
c∈Km

λ

E[`(φ̂′n(G0 + u+ c)− φ̂′n(c))|{Xi}]|

≤ sup
u∈Km

τ ,c∈Km
λ

|E[`(φ̂′n(Ĝ∗n + u+ c)− φ̂′n(c))|{Xi}]− E[`(φ̂′n(G0 + u+ c)− φ̂′n(c))|{Xi}]|

≤ sup
f∈BLa(D)

|E[f(Ĝ∗n)|{Xi}]− E[f(G0)]| = op(1) , (2.81)

where a ≡ max{M,C`Cφ̂′} with M being a upper bound of `, and the last equality is by

Assumption 2.3.5(i). As for the second term on the right hand side of (2.80), fix ε > 0 and

choose a compact set K0 ⊂ Rm such that P (G0 /∈ K0) < ε/(4M). Then

sup
u∈Km

τ

| sup
c∈Km

λ

E[`(φ̂′n(G0 + u+ c)− φ̂′n(c))|{Xi}]− sup
c∈Km

λ

E[`(φ′θ0(G0 + u+ c)− φ′θ0(c))]|

≤ sup
u∈Km

τ ,c∈Km
λ

E[|`(φ̂′n(G0 + u+ c)− φ̂′n(c))− `(φ′θ0(G0 + u+ c)− φ′θ0(c))||{Xi}]

≤ 2M · P (G0 /∈ K0) + C` sup
z∈K
‖φ̂′n(z)− φ′θ0(z)‖E + C` sup

z∈Km
λ

‖φ̂′n(z)− φ′θ0(z)‖E

≤ ε

2
+ op(1) , (2.82)

where K ≡ K0 +Km
λ +Km

τ is compact, and the last step is by Lemma 2.6.7.

Result (2.79) then follows from results (2.80), (2.81) and (2.82). The rest of the
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proof follows from that of Lemma (2.6.2).

Proof of Theorem 2.3.4: The proof is essentially the same as that of Theorem 2.3.2 by

combining Lemmas 2.6.4 and 2.6.6 and is thus omitted.

Lemma 2.6.4. Suppose that Assumptions 2.2.1, 2.2.2, 2.2.3, 2.3.1, 2.3.2, 2.3.3, 2.3.4,

2.3.5, 2.3.6(i)(ii), and 2.3.8 hold. Assume that the loss function ` is bounded. If ûn,m ∈ Ψ̂m,

then for each m ∈ N,

d(ûn,m,Ψm)
p−→ 0 , (2.83)

under {Pn,h} for each h ∈ H.

Proof: Fix m ∈ N throughout. The proof closely follows that of Lemma 2.6.2. First, by

the same arguments as before we can show the following uniform convergence result:

sup
u∈Du

|B̂m(u)−Bm(u)| p−→ 0 (2.84)

under Pn,0, and the identification condition – i.e. for each ε > 0,

inf
u∈Du\Ψεm

Bm(u) > inf
u∈Du

Bm(u) . (2.85)

Fix ε > 0. Now by the identification result (2.85), there is some δ > 0 such that

whenever u ∈ Du\Ψε
m we have

Bm(u)−Bm(u∗m) ≥ 2δ , (2.86)

where u∗m is any element in Ψm. Moreover, by Assumptions 2.3.3 and 2.3.4, Bm(u) is

continuous. Then by Assumption 2.3.8(ii) and the fact that kn → ∞ as n → ∞, we may

pick ukn ∈ Dkn such that

Bm(ukn)− δ ≤ Bm(u∗m) , (2.87)
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for all n sufficiently large. We now have for all n sufficiently large (so that (2.87) holds):

Pn,0(d(ûn,m,Ψm) > ε) = Pn,0(ûn,m ∈ Du\Ψε
m)

≤ Pn,0(Bm(ûn,m)−Bm(u∗m) ≥ 2δ)

= Pn,0(Bm(ûn,m)− B̂m(ûn,m) + B̂m(ûn,m)−Bm(u∗m) ≥ 2δ)

≤ Pn,0(Bm(ûn,m)− B̂m(ûn,m) + B̂m(ukn) + εn −Bm(u∗m) ≥ 2δ)

≤ Pn,0(Bm(ûn,m)− B̂m(ûn,m) + B̂m(ukn) + εn −Bm(ukn) ≥ δ)

≤ Pn,0(2 sup
u∈Dkn

|Bm(u)− B̂m(u)|+ εn ≥ δ)

≤ Pn,0(2 sup
u∈Du

|Bm(u)− B̂m(u)|+ εn ≥ δ)→ 0 , (2.88)

where the second inequality is due to the definition of ûn,m, and the third inequality is by

(2.87). Result (2.83) then follows under {Pn,0} by (2.88), (2.84) and εn = op(1) as n→∞.

By Assumption 2.2.1(ii), Pn,h and Pn,0 are mutually contiguous for each h ∈ H; see, for

example, Example 6.5 in van der Vaart (1998). Then lemma follows from Le Cam’s first

lemma.

Lemma 2.6.5. Let (D, τ) be a topological space and f : D→ R be a lower semicontinuous

function. For any A ⊂ D, we have

sup
x∈A

f(x) = sup
x∈A

f(x) ,

where A denotes the closure of A relative to τ .

Proof: We only consider the nontrivial case when A is nonempty. Suppose first that

supx∈A f(x) = ∞. Fix arbitrary large M > 0. Then there is some x0 ∈ A such that

f(x0) ≥M . Since x0 ∈ A, we may pick a net {xα} ⊂ A such that xα → x0 in τ . But then

since f is lower semicontinuous, lim infα f(xα) ≥ f(x0). In turn, this implies that there is

some α∗ such that supx∈A f(x) ≥ f(xα∗) > f(x0) − 1 ≥ M − 1. Since M is arbitrary, it

follows that supx∈A f(x) =∞.

Now suppose that supx∈A f(x) < ∞. Obviously, supx∈A f(x) ≤ supx∈A f(x). To
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conclude, it suffices to show that for any ε > 0,

sup
x∈A

f(x) ≤ sup
x∈A

f(x) + ε . (2.89)

First, we may pick some x0 ∈ A such that supx∈A f(x) ≤ f(x0) + ε/2. Next, we may choose

a net {xα} ⊂ A such that xα → x0 in τ . Since f is lower semicontinuous, lim infα f(xα) ≥

f(x0), implying that we may find some α∗ such that f(x0) ≤ f(xα∗) + ε/2. Combining

previous two inequalities, we conclude that

sup
x∈A

f(x) ≤ f(x0) + ε/2 ≤ f(xα∗) + ε ≤ sup
x∈A

f(x) + ε ,

proving (2.89), and we thus establish the Lemma.

Lemma 2.6.6. Let (D, d) be a metric space and K ⊂ D a nonempty compact subset. Let

(Ωn,An, Pn) be a sequence of probability spaces and Xn : Ωn → D arbitrary maps such

that d(Xn,K)
p−→ 0 under {Pn}. Then for any subsequence {nk}, there exist a further

subsequence {nkj} and some deterministic c ∈ K such that Xnkj

p−→ c as j →∞.

Proof: We proceed by contradiction. Fix a subsequence {nk} and suppose that for each

c ∈ K and every subsequence {nkj}, Xnkj

p9 c as j →∞. This implies that for each c ∈ K

there exist εc > 0 and ηc ∈ (0, 1) such that

lim inf
k→∞

Pnk(d(Xnk , c) > 2εc) > ηc ,

or equivalently,

lim sup
k→∞

Pnk(d(Xnk , c) < 2εc) < 1− ηc . (2.90)

Next, for each c ∈ K, let Bc(εc) ≡ {c′ ∈ K : d(c′, c) < εc}. Since {Bc(εc)}c∈K is an open

cover of K, compactness of K implies that there exists a finite subcover {Bcj (εj)}J
∗
j=1 with

J∗ < ∞ and εj ≡ εcj that covers K. Observe that if d(Xnk , cj) ≥ 2εj for all j = 1, . . . , J∗,

then we must have d(Xnk ,K) ≥ ε0, where ε0 ≡ min(ε1, . . . , εJ∗). To see this, suppose
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d(Xnk ,K) < ε0 and d(Xnk ,K) = d(Xnk , c
′) for some c′ ∈ K. Since d(c′, cj) < εj for some

j, it follows that

d(Xnk , cj) ≤ d(Xnk , c
′) + d(c′, cj) < ε0 + εj ≤ 2εj ,

a contradiction, implying that

Pnk(d(Xnk ,K) ≥ ε0) ≥ Pnk(d(Xnk , cj) ≥ 2εj , j = 1, . . . , J∗) . (2.91)

Elementary calculations then reveal that

lim inf
k→∞

Pnk(d(Xnk , cj) ≥ 2εj , j = 1, . . . , J∗)

= 1− lim sup
k→∞

Pnk(d(Xnk , cj) < 2εj for some j = 1, . . . , J∗)

≥ 1−
J∗∑
j=1

lim sup
k→∞

Pnk(d(Xnk , cj) < 2εj) ≥ 1−
J∗∑
j=1

(1− ηcj ) ≡ η0 , (2.92)

where we may assume that η0 > 0 by choosing ηcj ’s sufficiently small since we may increase

each εc to make ηc arbitrarily close to 1 or 1− ηc arbitrarily close to zero and meanwhile J∗

wouldn’t increase because the radius of each open ball Bc(εc) of the open cover {Bc(εc)}c∈K

increases. Combination of (2.91) and (2.92) then yields

lim inf
k→∞

Pnk(d(Xnk ,K) ≥ ε0) ≥ η0 > 0 ,

a contradiction. This completes the proof.

Lemma 2.6.7. Suppose Assumptions 2.2.1(ii) and 2.3.5(iii) hold. Then for any compact

subset K ⊂ D and any ε > 0,

sup
I⊂fH

lim sup
n→∞

sup
h∈I

Pn,h(sup
z∈K
‖φ̂′n(z)− φ′θ0(z)‖E > ε) = 0 . (2.93)

Proof: Fix a compact subset K ⊂ D and ε > 0. Since K is compact, φ′θ0 is continuous

and hence uniformly continuous on K so that we may find a finite collection {zj}Jj=1 with
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J <∞ such that zj ∈ K for all j and

sup
z∈K

min
1≤j≤J

max{Cφ̂′‖z − zj‖D, ‖φ
′
θ0(z)− φ′θ0(zj)‖E} <

ε

3
.

This, along with Assumption 2.3.5(iii)-b), implies that

sup
z∈K
‖φ̂′n(z)− φ′θ0(z)‖E ≤ max

1≤j≤J
‖φ̂′n(zj)− φ′θ0(zj)‖E +

2

3
ε . (2.94)

Fix a finite subset I ⊂ H. By Assumption 2.2.1(ii), Pn,h and Pn,0 are mutually contiguous

for each h ∈ H; see, for example, Example 6.5 in van der Vaart (1998). It follows from

Assumption 2.3.5(iv)-a) and Le Cam’s first lemma that

lim sup
n→∞

sup
h∈I

Pn,h(‖φ̂′n(zj)− φ′θ0(zj)‖E >
ε

3
) = 0 for all j = 1, . . . , J . (2.95)

Combining (2.95) and (2.95) we thus conclude that

lim sup
n→∞

sup
h∈I

Pn,h(sup
z∈K
‖φ̂′n(z)− φ′θ0(z)‖E > ε)

≤ lim sup
n→∞

sup
h∈I

Pn,h( max
1≤j≤J

‖φ̂′n(zj)− φ′θ0(zj)‖E >
ε

3
)

≤
J∑
j=1

lim sup
n→∞

sup
h∈I

Pn,h(‖φ̂′n(zj)− φ′θ0(zj)‖E >
ε

3
) = 0 .

Since this is true for each finite I ⊂ H, the lemma then follows immediately.

2.6.2 Results for Examples 2.2.1 - 2.2.4

Example 2.2.1 (Best Treatment)

By Corollary 2.3.1, the lower bound when θ(1) = θ(2) in this example becomes

inf
u∈R2

sup
c∈R2

E[`(φ′θ0(G0 + u+ c)− φ′θ0(c))]

= inf
u∈R2

sup
c∈R2

E[(max{G(1)
0 + u(1) + c(1),G(2)

0 + u(2) + c(2)} −max{c(1), c(2)})2] ,
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where G0 ∼ N (0, σ2I2). Replace u(1) and u(2) with u − ∆u and u respectively; similarly

define c − ∆c and c. Since the problem is symmetric in c1 and c2, we may assume that

∆c ≥ 0. Then we have

inf
u∈R2

sup
c∈R2

E[`(φ′θ0(G0 + u+ c)− φ′θ0(c))]

= inf
u∈R,∆u∈R

sup
∆c≥0

E[(max(G(1)
0 −∆c −∆u,G

(2)
0 ) + u)2]

= inf
u∈R,∆u∈R

sup
∆c≥∆u

E[(max(G(1)
0 −∆c,G

(2)
0 ) + u)2] .

Notice that for each u ∈ R,

sup
∆c≥∆u

E[(max(G(1)
0 −∆c,G

(2)
0 ) + u)2]

is monotonically decreasing in ∆u, whence we have by setting ∆u =∞ that

inf
u∈R2

sup
c∈R2

E[`(φ′θ0(G0 + u+ c)− φ′θ0(c))]

= inf
u∈R

E[(G(2)
0 + u)2] = E[(G(2)

0 )2] = σ2 .

It is clear that the optimum is achieved at u = (−∞, 0) and c = (−∞, c(2)) with c(2) ∈ R

arbitrary. This is consistent with Example 6 in Song (2014). By tedious but straightforward

calculations one can show that the lower bound can be also achieved at u = 0 and c = 0.

Example 2.2.2 (Interval Censored Outcome)

In this example, the identified region for ϑ is

Θ0 ≡ {ϑ ∈ R2 : E[Yl|Z] ≤ Zᵀϑ ≤ E[Yu|Z]} .
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Let’s now work out supϑ∈Θ0
λᵀϑ for some fixed λ ∈ R2. We have

sup{λᵀE[ZZᵀ]−1E[ZE[Y |Z]] : E[Yl|Z] ≤ E[Y |Z] ≤ E[Yu|Z]}

=
1∑

j=−1

1{λᵀE[ZZᵀ]−1zj ≥ 0}λᵀE[ZZᵀ]−1zjE[Yu|Z = zj ]P (Z = zj)

+

1∑
j=−1

1{λᵀE[ZZᵀ]−1zj < 0}λE[ZZᵀ]−1zjE[Yl|Z = zj ]P (Z = zj) ,

where zj = (1, j)ᵀ for j ∈ {−1, 0, 1}. Consider

1{λᵀE[ZZᵀ]−1z1 ≥ 0}λᵀE[ZZᵀ]−1z1

= 1{λ(1) θ(1) + θ(2)

θ(1) + θ(2) − (θ(2) − θ(1))2
+ λ(2) θ(1) − θ(2)

θ(1) + θ(2) − (θ(2) − θ(1))2
≥ 0}

×

[
λ(1) θ(1) + θ(2)

θ(1) + θ(2) − (θ(2) − θ(1))2
+ λ(2) θ(1) − θ(2)

θ(1) + θ(2) − (θ(2) − θ(1))2

]

≡ 1{ψ(θ) ≥ 0}ψ(θ) .

By the chain rule for Hadamard directionally differentiable maps (see Remark 2.3.1), one

can show that

φ′θ(z) = ψ′θ(z)1{ψ(θ) > 0}+ max{ψ′θ(z), 0}1{ψ(θ) = 0} .

Example 2.2.3 (Incomplete Auction Model)

Lemma 2.6.8. Let φ : `∞(R) × `∞(R) → `∞(R) be given by φ(θ) = max(θ(1), θ(2)), and

Bi = 1{x : θi(x) > θ−i(x)} for i = 1, 2 and B0 = {x : θ1(x) = θ2(x)}. It follows that

φ is Hadamard directionally differentiable at any θ ∈ `∞(R) × `∞(R) such that for any

z ∈ `∞(R)× `∞(R),

φ′θ(z) = z(1)1B1 + z(2)1B2 + max{z(1), z(2)}1B0 .

Proof: Fix z ∈ `∞(R) × `∞(R) and let {zn} ≡ {(z1n, z2n)} be any sequence in `∞(R) ×
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`∞(R) such that zn → z relative to the product norm as n→∞. Take arbitrary sequence

tn → 0 as n→∞. Write

t−1
n [φ(θ + tnzn)(x)− φ(θ)(x)]

= t−1
n

[
max{θ(1)(x) + tnz1n(x), θ(2)(x) + tnz2n(x)} −max{θ(1)(x), θ(2)(x)}

]
= t−1

n max{tnz1n(x), θ(2)(x)− θ(1)(x) + tnz2n(x)}1B1(x) + max{z1n(x), z2n(x)}1B0(x)

+ t−1
n max{θ(1)(x)− θ(2)(x) + tnz1n(x), tnz2n(x)}1B2(x) .

Consider the first term. Since tn = o(1) and z1n = z2n = O(1), for all n sufficiently large

we must have

max{tnz1n(x), θ(2)(x)− θ(1)(x) + tnz2n(x)}1B1(x) = tnz1n(x)1B1(x)

uniformly in x ∈ R, imply that

t−1
n max{tnz1n(x), θ(2)(x)− θ(1)(x) + tnz2n(x)}1B1(x)→ z(1)1B1(x)

uniformly in x. The third term can be handled similarly while the second term is immediate.

Lemma 2.6.9. Suppose that H is a separable Hilbert space with inner product 〈·, ·〉 and

induced norm ‖ · ‖. Let {hj}∞j=1 be a complete sequence in H and M ⊂ H a closed subspace.

Let Π be the orthogonal projection onto M. Then {Πhj}∞j=1 is complete in M.

Proof: Fix ε > 0 and h ∈ M. Then by completeness of {hj} in H, there exists λ1, . . . , λn

such that ‖h− (λ1h1 + · · ·+ λnhn)‖ < ε. It follows that

‖h− (λ1Πh1 + · · ·+ λnΠhn)‖ = ‖Πh− (λ1Πh1 + · · ·+ λnΠhn)‖

= ‖Π(h− (λ1h1 + · · ·+ λnhn))‖ ≤ ‖Π‖op‖h− (λ1h1 + · · ·+ λnhn)‖ < ε ,

where the second inequality follows from ‖Π‖op = 1 by Conway (1990, Proposition 3.3). We
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thus establish the Lemma.

Example 2.2.4 (Quantile Curves without Crossing)

Let D = L2(T , ν) where T = [ε, 1− ε] with 0 < ε < 1/2 and ν the Lebesgue measure

on T . The set Λ of (weakly) increasing functions in D can be formalized as follows. As

standard in Lp spaces, we consider two functions in L2(T ) to define the same element when

they are equal almost everywhere. We therefore say that f ∈ L2(T ) is ν-monotone or

simply monotone, if there exists a monotonic function g : T → R such that

ν({t ∈ T : f(t) 6= g(t)}) = 0 .

We then define Λ to be the set of ν-monotone functions in L2(T ). We first show that Λ is

closed and convex so that the metric projection exists and is singleton valued.

Lemma 2.6.10. Let Λ ⊂ L2(T ) be the set of increasing functions. Then Λ is convex and

closed.

Proof: Suppose that f1, f2 ∈ Λ. Then there exist increasing functions g1 and g2 such that

fi = gi almost everywhere. Since for any a ∈ [0, 1], af1 + (1− a)f2 = ag1 + (1− a)g2 almost

everywhere, and ag1+(1−a)g2 is clearly increasing, we thus conclude that af1+(1−a)f2 ∈ Λ

and thus Λ is convex. Now take a sequence {fn} ⊂ Λ such that ‖fn − f‖L2 → 0 as n→∞.

By passing to a subsequence if necessary, we may assume that fn → f ∈ L2(T ) almost

everywhere as n → ∞. Since fn ∈ Λ, there is an increasing function gn ∈ Λ such that

gn = fn almost everywhere. It follows that gn → f almost everywhere. Next define, for

each t ∈ T ,

f(t) ≡ lim sup
n→∞

gn(t) .

Then f = f almost everywhere. Pick any s, t ∈ T with s < t, we have

f(s) = lim sup
n→∞

gn(s) ≤ lim sup
n→∞

gn(t) = f(t) .

Thus f is increasing, implying that f ∈ Λ and hence Λ is closed.
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We note that if f ∈ L2(T ) is monotonically increasing on T except a Lebesgue null

set say E0 ⊂ T , then there must exist an f̃ such that f̃ = f almost everywhere and f̃ is

increasing everywhere on T , meaning that f ∈ Λ. Specifically, we construct f̃ as follows:

f̃(t) ≡


f(t) if t ∈ E1

limn→∞ f(tn) if t ∈ E0

,

where E1 ≡ T \E0, and {tn} ⊂ E1 is any sequence satisfying tn ↓ t as n → ∞. Such a

sequence exists because otherwise there exists a ball Bt(r) ≡ {t′ ∈ T : |t′ − t| ≤ r} for

some r > 0 such that Bt(r) ∩ E1 = ∅ and hence Bt(r) ⊂ E0, which is impossible since

then ν(E0) ≥ ν(Bt(r)) > 0. Now it is straightforward to verify that f̃ is increasing on the

whole domain T . One important implication out of this is that if f /∈ Λ, then there exists a

Lebesgue measurable set E with ν(E) > 0 such that f(s) > f(t) whenever s, t ∈ E satisfy

s < t.

We next proceed to establish the directional differentiability of metric projection

onto Λ at nonboundary points. There are couple of sufficient regularity conditions in the

literature towards this end. In present case, working with polyhedricity (Haraux, 1977) is

easier for us.

Lemma 2.6.11. Let D = L2(T ) and Λ the set of (weakly) increasing functions in D. Then

the projection ΠΛ is Hadamard directionally differentiable at any θ ∈ D and the resulting

derivative evaluated at z ∈ D is given by ΠCθ(z), where

Cθ = TΠΛθ ∩ [θ −ΠΛθ]
⊥ .

Proof: By Haraux (1977), it suffices to show that Λ is polyhedric – i.e.

(Λ + [ΠΛθ]) ∩ [θ −ΠΛθ]⊥ = Λ + [ΠΛθ] ∩ [θ −ΠΛθ]
⊥ . (2.96)

In turn, polyhedricity (2.96) is immediate if we can show that Λ + [ΠΛθ] is closed. To this

end, consider a sequence {fn} ⊂ Λ + [ΠΛθ] such that ‖fn − f‖L2 → 0 for some f ∈ L2(T ).
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We want to show that f ∈ Λ + [ΠΛθ].

Let θ = ΠΛθ. Without loss of generality we may assume that fn = λn + anθ where

λn ∈ Λ is an increasing function for each n ∈ N. If {an} is bounded, then by passing to a

subsequence if necessary we may assume that an → a ∈ R as n → ∞. This implies that

λn = fn − anθ → λ ≡ f − aθ in L2 as n→∞. Since Λ is closed, we have λ ∈ Λ and hence

f = λ + aθ ∈ Λ + [ΠΛθ]. For unbounded {an}, by passing to a subsequence if necessary,

first consider the case when an ↑ ∞ with an > 0 for all n ∈ N. Then fn = λn + anθ ∈ Λ

for each n ∈ N since Λ is a convex cone. This immediately implies that f ∈ Λ since Λ is

closed and hence f ∈ Λ + [ΠΛθ].

It remains to consider the case where fn = λn − anθ where an ↑ ∞ and an > 0 for

all n ∈ N. Suppose that f /∈ Λ + [ΠΛθ]. Then f + aθ is not increasing for all a ∈ R. In

particular, f + anθ + aθ is not increasing for each n and a > 0 – i.e. for each n ∈ N, there

is a subset En ⊂ T with ν(En) > 0 such that for all s, t ∈ En with s < t we have

f(s) + anθ(s) + aθ(s) > f(t) + anθ(t) + aθ(t) . (2.97)

Since ‖fn − f‖L2 → 0, by passing to a subsequence if necessary we may assume

that fn → f almost everywhere on T as n→∞. By Egoroff’s theorem (Saks, 1937, p.19),

we may write T =
⋃∞
j=0 Fj where F0, F1, F2, . . . are Lebesgue measurable sets such that

ν(F0) = 0, and fn → f uniformly on each Fj for j = 1, 2, . . .. Let Ẽn = En\F0 for all

n ∈ N. We claim that Ẽn ⊃ Ẽn+1 for each n ∈ N. To see this, pick s, t ∈ Ẽn+1 with s < t

such that

f(s) + an+1θ(s) + aθ(s) > f(t) + an+1θ(t) + aθ(t) . (2.98)
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It follows that

f(s) + anθ(s) + aθ(s) = f(s) + an+1θ(s) + aθ(s) + (an − an+1)θ(s)

> f(t) + an+1θ(t) + aθ(t) + (an − an+1)θ(s)

≥ f(t) + an+1θ(t) + aθ(t) + (an − an+1)θ(t)

= f(t) + anθ(t) + aθ(t) ,

where the first inequality is by (2.97), and the second is due to the facts that an ≤ an+1

and that θ(s) < θ(t) by θ ∈ Λ. Clearly, fn → f everywhere as n→∞ on Ẽ1.

To begin with, note that if there exist s, t ∈ Ẽn with s < t for some n ∈ N such

that θ(s) = θ(t), then by (2.97) it must be the case that f(s) > f(t). Since fn + αnθ is

monotonically increasing, s < t and θ(s) = θ(t), it follows that fn(s) ≤ fn(t) for all n ∈ N

and hence f(s) ≤ f(t) by letting n → ∞, a contradiction. Therefore, we may assume

without loss of generality that θ(s) < θ(t) for any s, t ∈ Ẽ1 with s < t.

We further claim that ν(Ẽn) ↓ 0 as n→∞. To see this, pick s1, t1 ∈ Ẽ1 with s1 < t1

such that (2.97) holds. We then have

[f(s1) + anθ(s1) + aθ(s1)]− [f(t1) + anθ(t1) + aθ(t1)]

= [f(s1) + aθ(s1)]− [f(t1) + aθ(t1)] + an[θ(s1)− θ(t1)]

→ −∞ < 0 , as n→∞ .

Thus one of {s1, t1} is not in
⋂∞
n=1 Ẽn. Continuing in this fashion, we end up with

⋂∞
n=1 Ẽn

consisting of a singleton and hence ν(Ẽn) ↓ 0 as n → ∞. Since Ẽ1 ⊂
⋃∞
j=1 Fj , it follows

that Ẽn0 ⊂
⋃J
j=1 Fj for some n0 and J large enough, implying that fn → f uniformly on

Ẽn0 . Thus, for all sufficiently large n ≥ n0 where n0 doesn’t depend on a,

fn(s) + ε+ anθ(s) + aθ(s) > fn(t)− ε+ anθ(t) + aθ(t) ,
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or,

λn(s) + 2ε+ a[θ(s)− θ(t)] > λn(t) , (2.99)

for s, t ∈ En\F0 with s < t. Since θ(s)− θ(t) < 0, by choosing a > 0 such that 2ε+a[θ(s)−

θ(t)] = 0, we may conclude that λn(s) > λn(t) for all sufficiently large n ≥ n0, reaching a

contradiction. Hence we must have f ∈ Λ + [ΠΛθ], meaning that Λ + [ΠΛθ] is closed so that

Λ is polyhedric.



www.manaraa.com

Chapter 3

Applications

Abstract

This chapter illustrates usefulness of the asymptotic framework developed in pre-

vious chapters. Section 3.1 constructs a test of whether a Hilbert space valued parameter

belongs to a known closed convex set – a setting that includes moment inequality problems

and certain tests of shape restrictions as special cases. Section 3.2 presents a new uniform

limit theory for the Grenander estimator under minimal assumptions – in particular without

strict concavity or bounded support. Our insight builds on the fact that the least concave

majorant operator is a Hadamard directionally differentiable map.
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3.1 Convex Set Projections

In this section, we demonstrate the usefulness of the developed asymptotic frame-

work by constructing a test of whether a Hilbert space valued parameter belongs to a known

closed convex set. Despite the generality of the problem, we show that its geometry and

our previous results make its analysis transparent and straightforward.

3.1.1 Projection Setup

In what follows, we let H be a Hilbert space with inner product 〈·, ·〉H and norm

‖ · ‖H. For a known closed convex set Λ ⊆ H, we then consider the hypothesis testing

problem

H0 : θ0 ∈ Λ H1 : θ0 /∈ Λ , (3.1)

where the parameter θ0 ∈ H is unknown, but for which we possess an estimator θ̂n. Special

cases of this problem have been widely studied in the setting where H = Rd, and to a lesser

extent when H is infinite dimensional; see Examples 3.1.1-3.1.3 below.

We formalize the introduced structure through the following assumption.

Assumption 3.1.1. (i) D = H where H is Hilbert space with inner product 〈·, ·〉H and

corresponding norm ‖ · ‖H; (ii) Λ ⊆ H is a known closed and convex set.

Since projections onto closed convex sets in Hilbert spaces are attained and unique,

we may define the projection operator ΠΛ : H→ Λ, which for each θ ∈ H satisfies

‖θ −ΠΛθ‖H = inf
h∈Λ
‖θ − h‖H . (3.2)

Thus, the hypothesis testing problem in (3.1) can be rewritten in terms of the distance

between θ0 and Λ, or equivalently between θ0 and its projection ΠΛθ0 – i.e.

H0 : ‖θ0 −ΠΛθ0‖H = 0 H1 : ‖θ0 −ΠΛθ0‖H > 0 . (3.3)

Interpreted in this manner, it is clear that (3.3) is a special case of (1.55), with D = H,



www.manaraa.com

132

Λ

θ

Tθ

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

1.5

2

2.5

3

Λ
ΠΛθ

θ

Tθ

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−1

−0.5

0

0.5

1

1.5

2

2.5

3

Figure 3.1: Illustrations of Tangent Cones.

E = R, and φ : H → R given by φ(θ) ≡ ‖θ − ΠΛθ‖H for any θ ∈ H. The corresponding

test statistic rnφ(θ̂n) is then simply the scaled distance between the estimator θ̂n and the

known convex set Λ – i.e. rnφ(θ̂n) = rn‖θ̂n −ΠΛθ̂n‖H.

As a final piece of notation, we need to introduce the tangent cone of Λ at a θ ∈ H,

which plays a fundamental role in our analysis. To this end, for any set A ⊆ H let A denote

its closure under ‖ · ‖H, and define the tangent cone of Λ at θ ∈ H by

Tθ ≡
⋃
α≥0

α{Λ−ΠΛθ} , (3.4)

which is convex by convexity of Λ. Heuristically, Tθ represents the directions from which

the projection ΠΛθ ∈ Λ can be approached from within the set Λ. As such, Tθ can be seen

as a local approximation to the set Λ at ΠΛθ and employed to study the differentiability

properties of the projection operator ΠΛ. Figure 3.1 illustrates the tangent cone in two

separate cases: one in which θ ∈ Λ, and a second in which θ /∈ Λ.
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3.1.1.1 Examples

In order to aid exposition and illustrate the generality of (3.1), we next provide

examples of both well studied and new problems that fit our framework.

Example 3.1.1. Suppose X ∈ Rd and that we aim to test the moment inequalities

H0 : E[X] ≤ 0 H1 : E[X] � 0 , (3.5)

where the null is meant to hold at all coordinates, and the alternative indicates at least one

coordinate of E[X] is strictly positive. In this instance, H = Rd, Λ is the negative orthant

in Rd (Λ ≡ {h ∈ Rd : h ≤ 0}), and the distance of θ to Λ is equal to

φ(θ) = ‖ΠΛθ − θ‖H =
{ d∑
i=1

(E[X(i)])2
+

} 1
2
, (3.6)

where (a)+ = max{a, 0} and X(i) denotes the ith coordinate of X. More generally, the

hypothesis in (3.3) accommodates any regular parameter and any closed convex set in Rd,

such as the test for moment inequalities on regression coefficients proposed by Wolak (1988)

and the test of random utility models developed in Kitamura and Stoye (2013). Analogously,

conditional moment inequalities as in Example 1.2.3 can also be encompassed by employing

a weight function on F – this approach leads to the Cramer-von-Mises statistic studied in

Andrews and Shi (2013).

The next example concerns quantile models, as employed by Buchinsky (1994) to

characterize the U.S. wage structure conditional on levels of education, or by Abadie et al.

(2002) to estimate the effect of subsidized training on earnings.

Example 3.1.2. Let (Y,D,Z) ∈ R×R×Rdz and consider the quantile regression

(θ0(τ), β(τ)) ≡ arg min
θ∈R,β∈Rdz

E[ρτ (Y −Dθ − Z ′β)] (3.7)

where ρτ (u) = (τ−1{u ≤ 0})u and τ ∈ (0, 1). Under appropriate restrictions, the estimator
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θ̂n for θ0 converges in distribution in `∞([ε, 1 − ε]) for any ε > 0 (Angrist et al., 2006).1

Hence, we may test shape restrictions on θ0 by letting

H ≡ {θ : [ε, 1− ε]→ R : 〈θ, θ〉H <∞} 〈θ1, θ2〉H ≡
∫ 1−ε

ε
θ1(τ)θ2(τ)dτ , (3.8)

and considering appropriate convex sets Λ ⊆ H. For instance, in randomized experiments

where D is a dummy for treatment, θ0(τ) is the quantile treatment effect and we may

test for its constancy or monotonicity; see Muralidharan and Sundararaman (2011) for

an examination of these features in the evaluation of teacher performance pay. A similar

approach may also be employed to test whether the pricing kernel satisfies theoretically

predicted restrictions such as a monotonicity (Jackwerth, 2000).

Our final example may be interpreted as a generalization of Example 3.1.2.

Example 3.1.3. Let Z ∈ Rdz , Θ ⊆ Rdθ , and T ⊆ Rdτ . Suppose there exists a function

ρ : Rdz ×Θ× T → Rdρ such that for each τ ∈ T there is a unique θ0(τ) ∈ Θ satisfying

E[ρ(Z, θ0(τ), τ)] = 0 . (3.9)

Such a setting arises, for instance, in sensitivity analysis (Chen et al., 2011), and in partially

identified models where the identified set is a curve (Arellano et al., 2012) or can be described

by a functional lower and upper bound (Kline and Santos, 2013; Chandrasekhar et al.,

2012). Escanciano and Zhu (2013) derives an estimator θ̂n which converges in distribution

in
⊗dθ

i=1 `
∞(T ), and hence for an integrable function w also in

H ≡ {θ : T → Rdθ : 〈θ, θ〉H <∞} 〈θ1, θ2〉H ≡
∫
T
θ1(τ)′θ2(τ)w(τ)dτ . (3.10)

Appropriate choices of Λ then enable us to test, for example, whether the model is identified

in Arellano et al. (2012), or whether the identified set in Kline and Santos (2013) is consistent

with increasing returns to education across quantiles.

1This result also holds for the instrumental variables estimator of Chernozhukov and Hansen (2005).
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3.1.2 Theoretical Results

3.1.2.1 Asymptotic Distribution

Our analysis crucially relies on the seminal work of Zarantonello (1971), who estab-

lished the Hadamard directional differentiability of metric projections onto convex sets in

Hilbert spaces. Specifically, Zarantonello (1971) showed ΠΛ : H → Λ is Hadamard direc-

tionally differentiable at any θ ∈ Λ, and its directional derivative is equal to the projection

operator onto the tangent cone of Λ at θ, which we denote by ΠTθ : H → Tθ. Figure 3.2

illustrates a simple example in which the derivative approximation

ΠΛθ1 −ΠΛθ0 ≈ ΠTθ0
(θ1 − θ0) (3.11)

actually holds with equality.2 We note that it is also immediate from Figure 2 that the

directional derivative ΠTθ0
is not linear, and hence ΠΛ is not fully differentiable.

Given the result in Zarantonello (1971), the asymptotic distribution of rnφ(θ̂n) can

then be obtained as an immediate consequence of Theorem 1.2.1.

Proposition 3.1.1. Let Assumption 1.2.2 and 3.1.1 hold. If θ0 ∈ Λ, then it follows that

rn‖θ̂n −ΠΛθ̂n‖H
L→ ‖G0 −ΠTθ0

G0‖H . (3.12)

In particular, Proposition 3.1.1 follows from norms being directionally differentiable

at zero, and hence by the chain rule the directional derivative φ′θ0 : H→ R satisfies

φ′θ0(h) = ‖h−ΠTθ0
h‖H . (3.13)

It is interesting to note that Λ ⊆ Tθ0 whenever Λ is a cone, and hence ‖h−ΠTθ0
h‖H ≤ ‖h−

ΠΛh‖H for all h ∈ H. Therefore, the distribution of ‖G0−ΠΛG0‖H first order stochastically

dominates that of ‖G0−ΠTθ0
G0‖H, and by Proposition 3.1.1 its quantiles may be employed

2Note that in Figure 2 we are exploiting that ΠΛθ0 = θ0 if θ0 ∈ Λ.
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Figure 3.2: Directional Differentiability

for potentially conservative inference – an approach that may be viewed as a generalization

of assuming all moments are binding in moment inequalities models. It is also worth noting

that Proposition 3.1.1 can be readily extended to study the projection itself rather than its

norm, allow for nonconvex sets Λ, and incorporate weight functions into the test statistic;

see Remarks 3.1.1 and 3.1.2.

Remark 3.1.1. Zarantonello (1971) and Theorem 1.2.1 can be employed to derive the

asymptotic distribution of the projection rn{ΠΛθ̂n −ΠΛθ0} itself. However, when studying

the projection, it is perhaps natural to aim to relax the requirement that θ0 ∈ Λ. Such

an extension, as well as considering non-convex Λ, is possible under appropriate regularity

conditions – see Shapiro (1994) for the relevant directional differentiability results.

Remark 3.1.2. While we do not consider it for simplicity, it is straightforward to incor-

porate weight functions into the test statistic.3 Formally, a weight function may be seen as

a linear operator A : H → H, and for any estimator Ân such that ‖Ân − A‖o = op(1) for

3For instance in (3.6) we may wish to consider {
∑d
i=1(E[X(i)])2

+/V ar(X
(i))}

1
2 instead.
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‖ · ‖o the operator norm, we obtain by asymptotic tightness of rn{θ̂n −ΠΛθ̂n} that

rn‖Ân{θ̂n −ΠΛθ̂n}‖H
L→ ‖A{G0 −ΠTθ0

G0}‖H . (3.14)

Thus, estimating weights has no first order effect on the asymptotic distribution.

3.1.2.2 Critical Values

In order to construct critical values to conduct inference, we next aim to employ

Theorem 1.3.3, which requires the availability of a suitable estimator φ̂′n for the directional

derivative φ′θ0 . To this end, we develop an estimator φ̂′n which, despite being computation-

ally intensive, is guaranteed to satisfy Assumption 1.3.3 under no additional requirements.

Specifically, for an appropriate εn ↓ 0, we define φ̂′n : H→ R pointwise in h ∈ H by

φ̂′n(h) ≡ sup
θ∈Λ:‖θ−ΠΛθ̂n‖H≤εn

‖h−ΠTθh‖H . (3.15)

Heuristically, we estimate φ′θ0(h) = ‖h−ΠTθ0
h‖H by the distance between h and the “least

favorable” tangent cone Tθ that can be generated by the θ ∈ Λ that are in a neighborhood

of ΠΛθ̂n. It is evident from this construction that provided εn ↓ 0 at an appropriate rate,

the shrinking neighborhood of ΠΛθ̂n will include θ0 with probability tending to one and as

a result φ̂′n(h) will provide a potentially conservative estimate of φ′θ0(h). As the following

Proposition shows, however, φ̂′n(h) is in fact not conservative, and φ̂′n provides a suitable

estimator for φ′θ0 in the sense required by Theorem 1.3.3.

Proposition 3.1.2. Let Assumptions 1.2.2, 3.1.1 hold, and φ′θ0(h) ≡ ‖h−ΠTθ0
h‖H. Then,

(i) If εn ↓ 0 and εnrn ↑ ∞, then φ̂′n as defined in (3.15) satisfies Assumption 1.3.3.

(ii) φ′θ0 : H→ R satisfies φ′θ0(h1 + h2) ≤ φ′θ0(h1) + φ′θ0(h2) for all h1, h2 ∈ H.

The first claim of the Proposition shows that φ̂′n satisfies Assumption 1.3.3. There-

fore, provided the bootstrap is consistent for the asymptotic distribution of rn{θ̂n − θ0},

Theorem 1.3.3 implies φ̂′n can be employed to construct critical values. We note that Propo-

sition 3.1.2(i) holds irrespective of whether the null hypothesis is satisfied, which readily
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implies the consistency of the corresponding test.4 In turn, Proposition 3.1.2(ii) exploits

the properties of closed convex cones to show the directional derivative φ′θ0 is always subad-

ditive. Thus, one of the key requirement of Theorem 1.3.4 is satisfied, and we can conclude

the proposed test is able to locally control size whenever θ̂n is regular. This latter conclusion

of course continues to hold if an alternative estimator to (3.15) is employed to construct

critical values. Hence, we emphasize that while φ̂′n as defined in (3.15) is appealing due to

its general applicability, its use may not be advisable in instances where simpler estimators

of φ′θ0 are available; see Remark 3.1.3.

Remark 3.1.3. In certain applications, the tangent cone Tθ0 can be easily estimated and

as a result so can φ′θ0 . For instance, in the moment inequalities model of Example 3.1.1,

Tθ0 = {h ∈ Rd : h(i) ≤ 0 for all i such that E[X(i)] = 0} . (3.16)

For X̄ the mean of an i.i.d. sample {Xi}ni=1, a natural estimator for Tθ0 is then given by

T̂n = {h ∈ Rd : h(i) ≤ 0 for all i such that X̄(i) ≥ −εn} (3.17)

for some sequence εn ↓ 0 and satisfying εn
√
n ↑ ∞. It is then straightforward to verify that

φ̂′n(h) = ‖h−ΠT̂n
h‖H satisfies Assumption 1.3.3 (compare to (3.13)) and, more interestingly,

that the bootstrap procedure of Theorem 1.3.3 then reduces to the generalized moment

selection approach of Andrews and Soares (2010).

3.1.3 Simulation Evidence

In order to examine the finite sample performance of the proposed test and illustrate

its implementation, we next conduct a limited Monte Carlo study based on Example 3.1.2.

Specifically, we consider a quantile treatment effect model in which the treatment dummy

D ∈ {0, 1} satisfies P (D = 1) = 1/2, the covariates Z = (1, Z(1), Z(2))′ ∈ R3 satisfy

4Formally, the law of φ̂′n(rn{θ̂∗n − θ̂n}) conditional on the data converges in probability to the law of
‖G0 −ΠTθ0

G0‖H regardless of whether θ0 ∈ Λ.



www.manaraa.com

139

Table 3.1: Empirical Size

n = 200
Bandwidth α = 0.1 α = 0.05 α = 0.01
C κ ∆ = 0 ∆ = 1 ∆ = 2 ∆ = 0 ∆ = 1 ∆ = 2 ∆ = 0 ∆ = 1 ∆ = 2

1 1/4 0.042 0.017 0.006 0.020 0.008 0.002 0.005 0.001 0.000
1 1/3 0.042 0.017 0.006 0.020 0.008 0.002 0.005 0.001 0.000

0.01 1/4 0.082 0.053 0.035 0.035 0.023 0.013 0.007 0.002 0.001
0.01 1/3 0.087 0.059 0.042 0.038 0.025 0.015 0.007 0.002 0.001
Theoretical 0.100 0.042 0.015 0.050 0.018 0.006 0.010 0.003 0.001

n = 500
Bandwidth α = 0.1 α = 0.05 α = 0.01
C κ ∆ = 0 ∆ = 1 ∆ = 2 ∆ = 0 ∆ = 1 ∆ = 2 ∆ = 0 ∆ = 1 ∆ = 2

1 1/4 0.051 0.020 0.007 0.026 0.011 0.002 0.005 0.001 0.000
1 1/3 0.051 0.020 0.007 0.026 0.011 0.002 0.005 0.001 0.000

0.01 1/4 0.096 0.058 0.038 0.047 0.025 0.015 0.009 0.005 0.001
0.01 1/3 0.103 0.065 0.045 0.049 0.030 0.017 0.009 0.005 0.001
Theoretical 0.100 0.042 0.015 0.050 0.018 0.006 0.010 0.003 0.001

(Z(1), Z(2))′ ∼ N(0, I) for I the identity matrix, and Y is related by

Y =
∆√
n
D × U + Z ′β + U , (3.18)

where β = (0, 1/
√

2, 1/
√

2)′ and U is unobserved, uniformly distributed on [0, 1], and inde-

pendent of (D,Z). It is then straightforward to verify that (Y,D,Z) satisfy

P (Y ≤ Dθ0(τ) + Z ′β(τ)|D,Z) = τ , (3.19)

for θ0(τ) ≡ τ∆/
√
n and β(τ) ≡ (τ, 1/

√
2, 1/
√

2)′. Hence, in this context the quantile

treatment effect has been set local to zero at all τ , which enables us to evaluate the local

power and local size control of the proposed test.

We employ the developed framework to study whether the quantile treatment effect

θ0(τ) is monotonically increasing in τ , which corresponds to the special case of (3.1) in

which Λ equals the set of monotonically increasing functions. For ease of computation, we

obtain quantile regression estimates θ̂n(τ) on a grid {0.2, 0.225, . . . , 0.775, 0.8} and compute

the distance of θ̂n to the set of monotone functions on this grid as our test statistic. In turn,
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Table 3.2: Local Power of 0.05 Level Test

Bandwidth n = 200
C κ ∆ = −1 ∆ = −2 ∆ = −3 ∆ = −4 ∆ = −5 ∆ = −6 ∆ = −7 ∆ = −8

1 1/4 0.061 0.155 0.321 0.555 0.782 0.934 0.989 1.000
1 1/3 0.061 0.155 0.321 0.555 0.782 0.934 0.989 1.000

0.01 1/4 0.078 0.172 0.330 0.558 0.783 0.934 0.989 1.000
0.01 1/3 0.081 0.174 0.331 0.559 0.783 0.934 0.989 1.000
Theoretical 0.120 0.245 0.423 0.623 0.796 0.911 0.970 0.992

Bandwidth n = 500
C κ ∆ = −1 ∆ = −2 ∆ = −3 ∆ = −4 ∆ = −5 ∆ = −6 ∆ = −7 ∆ = −8

1 1/4 0.071 0.181 0.355 0.576 0.789 0.925 0.981 0.997
1 1/3 0.071 0.181 0.355 0.576 0.789 0.925 0.981 0.997

0.01 1/4 0.094 0.201 0.370 0.583 0.791 0.925 0.981 0.997
0.01 1/3 0.098 0.204 0.371 0.585 0.791 0.925 0.981 0.997
Theoretical 0.120 0.245 0.423 0.623 0.796 0.911 0.970 0.992

critical values for this test statistic are obtained by computing two hundred bootstrapped

quantile regression coefficients θ̂∗n(τ) at all τ ∈ {0.2, 0.225, . . . , 0.775, 0.8}, and using the

1 − α quantile across bootstrap replications of the statistic φ̂′n(
√
n{θ̂∗n − θ̂n}), where φ̂′n is

computed according to (3.15) with εn = Cnκ for different choices of C and κ. All reported

results are based on five thousand Monte Carlo replications.

Table 3.1 reports the empirical rejection rates for different values of the local pa-

rameter ∆ ∈ {0, 1, 2} – recall that since θ0(τ) = τ∆/
√
n, the null hypothesis that θ0 is

monotonically increasing is satisfied for all such ∆. The bandwidth parameter εn employed

in the construction of the estimator φ̂′n is set according εn = Cnκ for C ∈ {0.01, 1} and

κ ∈ {1/4, 1/3}. For the explored sample sizes of two and five hundred observations, we

observe little sensitivity to the value of κ but a more significant effect of the choice of C. In

addition, the row labeled “Theoretical” reports the rejection rates we should expect accord-

ing to the local asymptotic approximation of Theorem 1.3.4. Throughout the specifications,

we see that the test effectively controls size, and Theorem 1.3.4 provides an adequate ap-

proximation often in between the rejection probabilities obtained from employing C = 1

and those corresponding to the more aggressive selection of C = 0.01.

In Table 3.2, we examine the local power of a 5% level test by considering values of

∆ ∈ {−1, . . . ,−8}. For such choices of the local parameter, the null hypothesis is violated
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since θ0(τ) = τ∆/
√
n is in fact monotonically decreasing in τ (rather than increasing). In

this context, we see that the theoretical local power is slightly above the empirical rejection

rates, in particular for small values of ∆. These distortions are most severe for n equal to

two hundred, though we note a quick improvement in the approximation error when n is set

to equal five hundred. Overall, we find the results of the Monte Carlo study encouraging,

though certainly limited in their scope.

3.2 Global Limit Theory for the Grenander Estimator under

Potentially Nonstrict Concavity

3.2.1 Introduction

Nonparametric estimation under shape constraints such as monotonicity, concavity

and log-concavity has received increasing attention in recent years. Groeneboom and Jong-

bloed (2014) provide a helpful introduction to the current state of the field. As pointed

out by Walther (2009), nonparametric estimation under shape constraints is attractive for

two main reasons: (1) shape constraints are often implied by theoretical models or are at

least plausible assumptions, and (2) nonparametric estimation under shape constraints is

often feasible without the use of tuning parameters, as opposed to classical kernel or series

estimators. Perhaps the best known shape constrained estimator is the Grenander estima-

tor of a concave distribution function or nonincreasing density function. Grenander (1956)

showed that, given a random sample drawn from a nonincreasing probability density, the

left-derivative of the least concave majorant (lcm) of the empirical distribution function

achieves the maximum likelihood among all nonincreasing densities.

In this paper we provide some new results concerning the asymptotic behavior of the

Grenander estimator. Quite a lot is known already. Denote by f̂n the Grenander estimator

of a nonincreasing density f based on a sample of size n with empirical distribution Fn, and

by F̂n the Grenander estimator of the concave distribution function F , i.e. the lcm of Fn.

The pointwise asymptotic distribution of f̂n was obtained by Rao (1969) at points where f
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is strictly decreasing, and by Carolan and Dykstra (1999) at points where f is flat. The rate

of convergence is n1/3 in the former case and n1/2 in the latter, and the limit distribution is

non-Gaussian. Results on the global asymptotic behavior of f̂n – specifically, of its Lp-risk

– are provided by Groenenboom (1984), Groeneboom et al. (1999), Kulikov and Lopuhaä

(2005), Durot (2007) and Durot et al. (2012). These global results require f to be strictly

decreasing on its support. Kulikov and Lopuhaä (2006a) study the behavior of f̂n near the

boundary of its support.

Turning to the asymptotic behavior of F̂n, it is natural to consider weak convergence

of the Grenander empirical process Ĝn =
√
n(F̂n − F ). A result of Kiefer and Wolfowitz

(1976) implies that F̂n and Fn are asymptotically equivalent when F satisfies strict concavity

on its support, so that Ĝn converges weakly to G = B ◦ F , a Brownian bridge B composed

with F . Other results on the behavior of F̂n−Fn when F is strictly concave on its support

have been provided by Wang (1994) and Kulikov and Lopuhaä (2006b, 2008). On the other

hand, when F is the uniform distribution on the unit interval it is known that F̂n and Fn are

not asymptotically equivalent, and Ĝn converges weakly to the lcm of B, a process studied

in detail by Carolan and Dykstra (2001). Carolan (2002) considers the more general case

where F is affine over some maximal subinterval [a, b] of its support, and shows that the

restriction of Ĝn to [a, b] converges weakly to the lcm of the restriction of G to [a, b].

Our first main result, Theorem 3.2.1 below, establishes the weak convergence of

Ĝn in the intermediate cases where F is concave but not necessarily strictly concave or

uniform. As might be guessed from the results of Carolan (2002), the weak limit Ĝ can be

obtained by taking lcms of G over the distinct intervals on which F is affine. We do not

impose bounded support or other technical conditions on F . Our proof exploits the fact

that the lcm operator is Hadamard directionally differentiable (see Definition 3.2.2 below)

despite not being fully Hadamard differentiable. This provides enough structure to invoke

the Delta method (Shapiro, 1991; Dümbgen, 1993) and in this way derive the weak limit

of Ĝn. Our result applies not only to the Grenander estimator of F , but to any estimator

of F obtained by taking the lcm of an estimator Fn of F for which
√
n(Fn − F ) converges

weakly to a continuous process G vanishing at the boundaries 0 and∞. Thus, for instance,
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we may take Fn to be a smoothed estimate of F , as in Eggermont and LaRiccia (2000), and

we may allow the data used to construct Fn to exhibit limited serial dependence.

Our weak convergence result for Ĝn can be useful, for example, when constructing

uniform confidence bands for F . However, doing so requires consistent estimation of the

weak limit Ĝ, which turns out to be nontrivial. The fact that the lcm operator fails to be

fully Hadamard differentiable implies that the bootstrap does not produce consistent esti-

mates of the law of Ĝ (Fang and Santos, 2014). In other words, the Delta method generalizes

under Hadamard directional differentiability to obtaining the weak limit of Ĝn but not to

obtaining bootstrap consistency. Our second main result, Theorem 3.2.2 below, shows how

a modified bootstrap procedure may be used to approximate the law of Ĝ. Exploiting the

fact that Ĝ can be written as the composition of the Hadamard directional derivative of

the lcm operator and a process G that can be consistently bootstrapped, we follow Fang

and Santos (2014) and compose a suitable estimator of the derivative with a bootstrapped

version of G. The estimated derivative is obtained using a numerical differentiation tech-

nique along the lines pursued by Hong and Li (2014). We show how our modified bootstrap

procedure may be used to construct valid confidence bands for F .

The rest of the paper is structured as follows. Section 3.2.2 establishes the uniform

weak convergence of the Grenander distribution function – i.e. the least concave majorant

of the empirical distribution function. Section 3.2.3 presents a consistent bootstrap for

estimating the law of the weak limit derived in Section 3.2.2. Section 3.2.4 concludes. All

proofs are collected in the Appendix.

Before proceeding further we introduce some additional notation. We denote by

C0(R+) the set of continuous, real valued functions on R+ that vanish at 0 and ∞. For

a convex set T ⊆ R̄+, we let `∞c (T ) denote the set of uniformly bounded, concave, real

valued functions on T , and let Cbc(T ) denote the set of continuous, uniformly bounded,

concave, real valued functions on T . The sets `∞(T ), Cb(R
+), C0(R+), `∞c (T ) and Cbc(T )

should be understood to be equipped with the uniform norm ‖ · ‖∞, as appropriate. We let

L−→ denote weak convergence in the Hoffmann-Jørgensen sense (van der Vaart and Wellner,

1996). Finally, if T is a set equipped with a metric d, then we let BL1(T ) denote the set of
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real valued functions on T whose level and Lipschitz constant are bounded by one – i.e.,

BL1(T ) =
{
f : T → R

∣∣ |f(t1)| ≤ 1 and |f(t1)− f(t2)| ≤ d(t1, t2) for all t1, t2 ∈ T
}
.

We write BL1 as shorthand for BL1(`∞(R+)).

3.2.2 Weak Convergence

The distribution function F to be estimated is taken to be that of a nonnegative

random variable. We treat it as a real valued map on R+ and maintain throughout that it

satisfies the following condition.

Assumption 3.2.1. F : R+ → R is a continuous concave distribution function on R+

with F (0) = 0.

No further technical conditions will be imposed on F . To maintain generality about

the underlying sampling scheme and method of estimation, we suppose the existence of a

sequence {Fn}∞n=1 as maps from the data {Xi}ni=1 into `∞(R+) satisfying the following high

level condition, in which Gn ≡
√
n(Fn − F ).

Assumption 3.2.2. Gn
L−→ G in `∞(R+) for some tight random element G of C0(R+).

If Fn is the empirical distribution function of an independent and identically dis-

tributed (iid) sample of size n drawn from F then Gn is the usual empirical process and

clearly Assumption 3.2.2 is satisfied with G = Gλ◦F and Gλ the standard Brownian bridge.

More generally, we may allow the sample drawn from F to satisfy a mixing condition or

related property (Dehling and Philipp, 2002), or we may take Fn to be a smoothed empirical

distribution function (van der Vaart, 1994) or some other estimator satisfying Assumption

3.2.2 under suitable regularity conditions.

To exploit the concavity of F we propose using the estimator F̂n = MFn, where

M is the lcm operator. If Fn is the empirical distribution function of an iid sample drawn

from F , then the left-derivative of F̂n is the classical Grenander estimator of the probability

density for F . The following definition of M is adapted from Beare and Moon (2015).
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Definition 3.2.1. Given a convex set T ⊆ R+, the lcm over T is the operator MT :

`∞(R+)→ `∞(T ) that maps each θ ∈ `∞(R+) to the function

MT θ(x) = inf{g(x) : g ∈ `∞c (T ) and θ ≤ g on T}, x ∈ T.

We write M as shorthand for MR+ and refer to M as the lcm operator.

The definition of MT given here differs from that of Beare and Moon (2015) only

in that those authors took the domain of MT to be `∞([0, 1]) and required T to be a

closed subinterval of the unit interval. Clearly, the image of MT is `∞c (T ). Other well

known properties ofMT include monotonicity, homogeneity of degree one, and contractivity

(Marshall’s lemma). Beare and Moon (2015) investigated the differential properties of M

in order to study the asymptotic behavior of a test of the monotone density ratio property

proposed by Carolan and Tebbs (2005). For an application of this test to address an

empirical puzzle in the financial literature, see Beare and Schmidt (2015).

As pointed out by Beare and Moon (2015), M fails to be Hadamard differentiable

and hence violates the assumptions made in standard treatments of the Delta method

(van der Vaart and Wellner, 1996); however, M does satisfy a certain form of directional

differentiability studied by Shapiro (1990). Quite remarkably, the Delta method is valid

under this weaker notion of differentiability (Shapiro, 1991; Dümbgen, 1993).

Definition 3.2.2. Let D and E be normed spaces equipped with norms ‖ · ‖D and ‖ · ‖E

respectively. A map φ : Dφ ⊆ D→ E is said to be Hadamard directionally differentiable at

θ ∈ Dφ tangentially to a set D0 ⊂ D if there is a map φ′θ : D→ E such that

lim
n→∞

∥∥∥∥φ(θ + tnhn)− φ(θ)

tn
− φ′θ(h)

∥∥∥∥
E

= 0 (3.20)

for all sequences {hn} ⊂ D and {tn} ⊂ R+ such that tn ↓ 0, hn → h ∈ D0 as n → ∞ and

θ + tnhn ∈ Dφ for all n.

As with various notions of differentiability in the literature, Hadamard directional

differentiability can be understood by looking at the restrictions imposed on the approximat-
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ing map (i.e. the derivative) and the way the approximation error is controlled (Averbukh

and Smolyanov, 1967, 1968). Specifically, let

Remθ(h) ≡ φ(θ + h)− {φ(θ) + φ′θ(h)}, (3.21)

where φ(θ) + φ′θ(h) can be viewed as the first order approximation of φ(θ + h). Hadamard

directional differentiability of φ then amounts to requiring the approximation error Remθ(h)

satisfy that Remθ(th)/t tends to zero uniformly in h ∈ K for any compact set K – i.e.,

sup
h∈K

∥∥∥∥Remθ(th)

t

∥∥∥∥
E
→ 0 as t ↓ 0.

However, unlike Hadamard differentiability that requires the approximating map φ′θ to be

linear and continuous, linearity of the directional counterpart is often lost, even though

continuity is assured (Shapiro, 1990, Proposition 3.1). In fact, linearity of the derivative

is the exact gap between these two notions of differentiability (Fang and Santos, 2014,

Proposition 2.1).

Proposition 3.2.1. The lcm operator M : `∞(R+)→ `∞(R+) is Hadamard directionally

differentiable at any θ ∈ Cbc(R+) tangentially to C0(R+). Its directional derivative M′θ :

C0(R+) → `∞(R+) is uniquely determined as follows: for any h ∈ C0(R+) and x ∈ R+,

we have M′θh(x) = MTθ,xh(x), where Tθ,x is the union of all convex subsets of R+ that

contain x and over which θ is affine.

Proposition 3.2.1 establishes Hadamard directional differentiability of the lcm oper-

ator. Similar to Lemma 3.2 in Beare and Moon (2015), the derivative M′θ is nonlinear in

general and in fact linear if and only if θ is strictly concave, in which caseM′θ is the identity

map. If θ is affine in a neighborhood of x, the set Tθ,x is a either a closed interval [aθ,x, bθ,x]

or a half-line [aθ,x,∞). If θ is not affine in a neighborhood of x, we have Tθ,x = {x} and

M′θh(x) = h(x). The derivativeM′θ therefore behaves like a hybrid of the lcm and identity

operators: for any direction h ∈ C0(R+), it majorizes h by concave functions on regions

over which θ is affine but acts like an identity map elsewhere.
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Let Ĝn =
√
n(F̂n − F ), the Grenander empirical process, and let Ĝ =M′FG. With

Hadamard directional differentiability of M in hand, we obtain our first main result by

employing the Delta method.

Theorem 3.2.1. Under Assumptions 3.2.1 and 3.2.2 we have Ĝn
L−→ Ĝ in `∞(R+).

Theorem 3.2.1 can be viewed as an extension of a result of Carolan (2002), who

showed in the proof of his Theorem 5 that when F is affine over a maximal interval [a, b] ⊆

R+, the restriction of Ĝn to [a, b] converges weakly to the lcm of the restriction of G to [a, b].

Our result extends his to obtain weak convergence of the entire process Ĝn even when F

may have multiple affine segments separated by kinks, or by intervals over which it is strictly

concave. Further, since our proof is an application of the Delta method, it is simple for us

to consider general estimators Fn satisfying Assumption 3.2.2, whereas Carolan requires Fn

to be the empirical distribution based on iid draws from F . Note that when F is strictly

concave we have Ĝ = G, and so from Theorem 3.2.1 we recover the asymptotic equivalence

of F̂n and Fn implied by results of Kiefer and Wolfowitz (1976), but here under milder

conditions.

3.2.3 The Bootstrap

Parallel to the level of generality adopted in our treatment of the estimator Fn in the

previous section, we here maintain a high degree of generality with respect to the method

used to obtain a bootstrap version F∗n of Fn. For example, for the standard nonparametric

bootstrap,

F∗n(x) =
1

n

n∑
i=1

1{X∗i ≤ x} =
1

n

n∑
i=1

Wni1{Xi ≤ x} , x ∈ [0,∞) ,

where {X∗i }ni=1 are an i.i.d. sample from Fn conditional on the data {Xi}ni=1, and (Wn1, . . . ,Wnn)

is a multinomial vector independent of {Xi}ni=1 with n categories and probabilities (1/n, . . . , 1/n).

To rigorously formalize our discussion, we need to be careful about the measurability issues.

Throughout, {Xn}∞n=1 are defined as the coordinate projections on the first “∞” coordi-

nates in the canonical probability space (
∏∞
n=1 R+×Z,

∏∞
n=1 B(R+)×C,

∏∞
n=1 P×Q) where
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B(R+) is the Borel σ-algebra on R+ and P is the probability measure associated with F ,

and the bootsrtap weights depend on the last factor only.

Given the above setup, one might expect
√
n{MF∗n−Fn} to be a consistent estimate.

Unfortunately, this would not work and necessarily produces inconsistent results (Fang and

Santos, 2014). However, the form of the weak limit M′F (G) in Theorem 3.2.1 suggests a

solution of composing some bootstrapped approximation G∗n of G with a suitable estimator

M̂′n of the derivativeM′F as in Fang and Santos (2014). Bootstrapping G is easy and can be

implemented, for example, by the nonparametric bootstrap. EstimatingM′F is tricky. The

simple plug-in estimator M′Fn would not work, which is actually easy to see. Recall from

Proposition 3.2.1 thatM′F is linear in h when h is strictly concave but otherwise nonlinear.

Heuristically, there exist concave functions having affine sections arbitrarily close to any

given strictly concave function, implying that local perturbations from a strictly concave

function will result in dramatic changes of the derivatives. This type of “discontinuity” of

the directional derivatives is closely related to the bootstrap inconsistency under nonsmooth

transformations.

For the sake of bootstrap consistency, Fang and Santos (2014) impose the high level

condition that an appropriate derivative estimator would converge in probability to the

truth uniformly on any δ-enlargement of compact sets (see Assumption 3.3 in Fang and

Santos (2014)). There are at least two ways to accomplish this. As in Seo (2014) and

Beare and Shi (2015), we may employ a linear isometry approximation to represent the

derivativeM′F as a supremum over a set – a set that is similar to the contact set in Linton

et al. (2010). As such, estimating the derivative boils down to estimating the contact set.

Alternatively, we may also follow the numerical approach proposed by Hong and Li (2014)

which we adopt in this paper.

Define M̂′n : `∞(R+)→ `∞(R+) by

M̂′n(h) =
M(Fn + tnh)−M(Fn)

tn
, h ∈ `∞(R+) , (3.22)

where tn is a sequence of positive scalars approaching zero. We now aim to show that
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M̂′n(
√
n{F∗n − Fn}) can consistently estimate the law of M′F (G) where F∗n : {Xi,Wi}ni=1 →

`∞(R+) is a bootstrap analog F∗n of Fn with {Wi}ni=1 the bootstrap weights. To this end,

we formalize bootstrap consistency of
√
n{F∗n − Fn} as follows.

Assumption 3.2.3. (i) F∗n : {Xi,Wi}ni=1 → `∞(R+) where {Wi}ni=1 are the bootstrap

weights independent of {Xi}ni=1; (ii) F∗n satisfies

sup
h∈BL1

|EW [h(
√
n{F∗n − Fn})]− E[h(G)]| = op(1) ,

where EW denotes (outer) expectation with respect to {Wi} holding {Xi} fixed.

Assumption 3.2.4. EW [h(
√
n{F∗n−Fn})∗]−EW [h(

√
n{F∗n−Fn})∗]→ 0 almost surely for

all h ∈ Cb(`∞(R+)), where h(
√
n{F∗n − Fn})∗ and h(

√
n{F∗n − Fn})∗ denote minimal mea-

surable majorant and maximal measurable minorant respectively with respect to {Xi,Wi}

jointly.

Assumption 3.2.3(i) defines the bootstrap analog F∗n of Fn, while Assumption 3.2.3(ii)

simply imposes bootstrap consistency of F∗n which accommodates block bootstrap and gen-

eral exchangeable bootstrap as well as nonparametric bootstrap. Assumption 3.2.4 demands

mild measurability requirement and is automatically satisfied for nonparametric bootstrap.5

We are now in a position to establish the bootstrap consistency of M̂′n(
√
n{F∗n−Fn}).

Theorem 3.2.2. Let Assumptions 3.2.1, 3.2.2, 3.2.3 and 3.2.4 hold. If {tn} satisfies tn ↓ 0

and
√
ntn →∞ as n→∞, then

sup
h∈BL1

|EW [h(M̂′n(
√
n{F∗n − Fn}))]− E[h(M′F (G))]| = op(1) .

Theorem 3.2.2 confirms that the law of M̂′n(
√
n{F∗n−Fn}) is consistent for the law of

the weak limitM′F (G) in Theorem 3.2.1 conditional on the data {Xi}ni=1. It is worth noting

that estimation of the derivative entails choice of a tuning parameter tn which approaches

zero at a rate slower than
√
n, a phenomenon prominent in irregular models.

5Note that Assumption 3.2.4(ii) is stronger than asymptotic measurability of
√
n{F∗n − Fn}, and closely

related to the measurability part of the definition of bootstrap consistency as in van der Vaart and Wellner
(1996) and Kosorok (2008).
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To illustrate usefulness of Theorem 3.2.2, we next construct a confidence band for

F at confidence level 1− α with α ∈ (0, 1).

Corollary 3.2.1. Let Assumptions 3.2.1, 3.2.2, 3.2.3 and 3.2.4 hold, and

ĉ1−α ≡ inf{c : PW (‖M̂′n(
√
n{F∗n − Fn})‖∞ ≤ c) ≥ 1− α} .

It follows that:

(i) ĉ1−α
p−→ c1−α where c1−α is the 1−α quantile of the distribution function of ‖M′F (G)‖∞;

(ii) {F̂n(t)± ĉ1−α/
√
n : t ∈ [0,∞)} is a confidence band for F with asymptotic confidence

level 1− α – i.e.,

lim inf
n→∞

P

(
F (t) ∈ F̂n(t)± ĉ1−α√

n
for all t ∈ [0,∞)

)
≥ 1− α .

Corollary 3.2.1 shows that our proposed bootstrap provides valid critical values and

confidence regions. Note that the distribution function of ‖M′F (G)‖∞ is strictly increasing

everywhere on its support; see Lemma 3.4.1. In practice, ĉ1−α is infeasible but can be

computed by simulation methods. As a final remark, we note that the confidence band

above is valid at least locally in view of the facts that F is a regular parameter in the sense

of van der Vaart and Wellner (1996) and that ‖M′F (G)‖∞ is a subadditive functional of

the Gaussian process G (Fang and Santos, 2014). The former is a well known fact (Bickel

et al., 1993, Example 5.3.1). To see the latter, by Lemma 6.10 in Aliprantis and Border

(2006) we may write

‖M′F (G)‖∞ = sup
g∈S∗
|g(M′F (G))| = sup

g∈S∗
g(M′F (G)) ,

where S∗ is the unit circle of the topological dual space `∞(R+)∗ of `∞(R+) – i.e. S∗ ≡

{g ∈ `∞(R+)∗ : ‖g‖op = 1} with ‖ · ‖op the corresponding operator norm; see also the proof

of Lemma 3.4.1.
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3.2.4 Conclusion

In this paper, we have derived the uniform weak convergence of the least concave

majorant of the empirical distribution function under minimal assumptions, in particular

without bounded support condition and adaptive to strictness of concavity. The derivation

built on the fact that least concave majorant operator is Hadamard directionally differen-

tiable. Since the bootstrap consistency of bootstrap is necessarily lost under such transfor-

mation, we proposed a consistent one which involved estimating the directional derivative.

We illustrated the usefulness of our bootstrap by constructing valid critical values and con-

fidence bands. In fact, our results can be used to build up statistics for testing concavity,

or equivalently monotonicity of density in the context of the Grenander problem, and con-

struct pointwise critical values which avoid usage of those based on least favorable curves.

We leave the study of this problem to future research.
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3.4 Appendix

3.4.1 Proofs of Section 3.1

Proof of Proposition 3.1.1: We proceed by verifying Assumptions 1.2.1, 1.2.2, and

1.2.3, and then employing Theorem 1.2.1 to obtain (3.12). To this end, define the maps

φ1 : H → H to be given by φ1(θ) = θ − ΠΛθ, and φ2 : H → R by φ2(θ) ≡ ‖θ‖H. Letting

φ ≡ φ2 ◦ φ1 and noting φ1(θ0) = 0 due to θ0 ∈ Λ, we then obtain the equality:

rn‖θ̂n −ΠΛθ̂n‖H = rn{φ(θ̂n)− φ(θ0)} . (3.23)
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By Lemma 4.6 in Zarantonello (1971), φ1 is then Hadamard directionally differentiable at

θ0 with derivative φ′1,θ0 : H → H given by φ′1,θ0(h) = h − ΠTθ0
h; see also (Shapiro, 1994,

p.135). Moreover, since φ2 is Hadamard directionally differentiable at 0 ∈ H with derivative

φ′2,0(h) = ‖h‖H, Proposition 3.6 in Shapiro (1990) implies φ is Hadamard directionally

differentiable at θ0 with φ′θ0 = φ′2,0 ◦ φ′1,θ0 . In particular, we have

φ′θ0(h) = ‖h−ΠTθ0
h‖H , (3.24)

for any h ∈ H. Thus, (3.24) verifies Assumption 1.2.1 and, because in this case D = D0 = H,

we conclude Assumption 1.2.3 holds as well. Since Assumption 1.2.2 was directly imposed,

the Proposition then follows form Theorem 1.2.1.

Proof of Proposition 3.1.2: In order to establish the first claim of the Proposition, we

first observe that for any h1, h2 ∈ H we must have that:

φ̂′n(h1)− φ̂′n(h2) ≤ sup
θ∈Λ:‖θ−ΠΛθ̂n‖H≤εn

{‖h1 −ΠTθh1‖H − ‖h2 −ΠTθh2‖H}

≤ sup
θ∈Λ:‖θ−ΠΛθ̂n‖H≤εn

{‖h1 −ΠTθh2‖H − ‖h2 −ΠTθh2‖H} ≤ ‖h1 − h2‖H , (3.25)

where the first inequality follows from the definition of φ̂′n(h), the second inequality is

implied by ‖h1 − ΠTθh1‖H ≤ ‖h1 − ΠTθh2‖H for all θ ∈ Λ, and the third inequality holds

by the triangle inequality. Result (3.25) further implies φ̂′n(h2)− φ̂′n(h1) ≤ ‖h1− h2‖H, and

hence we can conclude φ̂′n : H→ R is Lipschitz – i.e. for any h1, h2 ∈ H:

|φ̂′n(h1)− φ̂′n(h2)| ≤ ‖h1 − h2‖H . (3.26)

Thus, by Lemma 1.6.6, in verifying φ̂′n satisfies Assumption 1.3.3 it suffices to show that:

|φ̂′n(h)− φ′θ0(h)| = op(1) (3.27)

for all h ∈ H. To this end, note that convexity of Λ and Proposition 46.5(2) in Zeidler (1990)
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imply ‖ΠΛθ0−ΠΛθ‖H ≤ ‖θ0− θ‖H for any θ ∈ H. Thus, since rn{θ̂n− θ0} is asymptotically

tight by Assumption 1.2.2 and rnεn ↑ ∞ by hypothesis, we conclude that:

lim inf
n→∞

P (‖ΠΛθ0 −ΠΛθ̂n‖H ≤ εn) ≥ lim inf
n→∞

P (rn‖θ0 − θ̂n‖H ≤ rnεn) = 1 . (3.28)

Moreover, the same arguments as in (3.28) and the triangle inequality further imply that:

lim inf
n→∞

P (‖θ −ΠΛθ0‖H ≤ 2εn for all θ ∈ Λ s.t. ‖θ −ΠΛθ̂n‖H ≤ εn)

≥ lim inf
n→∞

P (‖ΠΛθ0 −ΠΛθ̂n‖H ≤ εn) = 1 . (3.29)

Hence, from the definition of φ̂′n and results (3.28) and (3.29) we obtain for any h ∈ H:

lim inf
n→∞

P (‖h−ΠTθ0
h‖H ≤ φ̂′n(h) ≤ sup

θ∈Λ:‖θ−ΠΛθ0‖H≤2εn

‖h−ΠTθh‖H) = 1 . (3.30)

Next, select a sequence {θn} with θn ∈ Λ and ‖θn −ΠΛθ0‖H ≤ 2εn for all n, such that:

lim sup
n→∞

{ sup
θ∈Λ:‖θ−ΠΛθ0‖H≤2εn

‖h−ΠTθh‖H} = lim
n→∞

‖h−ΠTθn
h‖H . (3.31)

By Theorem 4.2.2 in Aubin and Frankowska (2009), the cone valued map θ 7→ Tθ is lower

semicontinuous on Λ and hence since ‖θn − ΠΛθ0‖H = o(1), it follows that there exists a

sequence {h̃n} such that h̃n ∈ Tθn for all n and ‖ΠTθ0
h− h̃n‖H = o(1). Thus,

lim sup
n→∞

{ sup
θ∈Λ:‖θ−ΠΛθ0‖H≤2εn

‖h−ΠTθh‖H}

= lim
n→∞

‖h−ΠTθn
h‖H ≤ lim

n→∞
‖h− h̃n‖H = ‖h−ΠTθ0

h‖H , (3.32)

where the first equality follows from (3.31), the inequality by h̃n ∈ Tθn , and the second

equality by ‖h̃n − ΠTθ0
h‖H = o(1). Hence, combining (3.30) and (3.32) we conclude that

(3.27) holds, and by Lemma 1.6.6 and (3.26) that φ̂′n satisfies Assumption 1.3.3.

For the second claim, first observe that Λ being convex implies Tθ0 is a closed

convex cone. Hence, by Proposition 46.5(4) in Zeidler (1990), it follows that ‖ΠTθ0
h‖2H =
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〈h,ΠTθ0
h〉H for any h ∈ H. In particular, for any h1, h2 ∈ H we must have:

‖h1 + h2 −ΠTθ0
(h1 + h2)‖2H = 〈h1 + h2, h1 + h2 −ΠTθ0

(h1 + h2)〉H . (3.33)

However, Proposition 46.5(4) in Zeidler (1990) further implies that 〈c, h1 + h2 −ΠTθ0
(h1 +

h2)〉 ≤ 0 for any h1, h2 ∈ H and c ∈ Tθ0 . Therefore, since ΠTθ0
h1,ΠTθ0

h2 ∈ Tθ0 , we can

conclude from result (3.33) and the Cauchy Schwarz inequality that

‖h1 + h2 −ΠTθ0
(h1 + h2)‖2H ≤ 〈h1 −ΠTθ0

h1 + h2 −ΠTθ0
h2, h1 + h2 −ΠTθ0

(h1 + h2)〉H

≤ ‖h1 + h2 −ΠTθ0
(h1 + h2)‖H × ‖(h1 −ΠTθ0

h1) + (h2 −ΠTθ0
h2)‖H . (3.34)

Thus, the Proposition follows from (3.34) and the triangle inequality.

3.4.2 Proofs of Section 3.2

Proof of Proposition 3.2.1: Fix f ∈ `∞c (R+) and let {hn} be a sequence in `∞(R+)

such that ‖hn − h‖∞ → 0 as n→∞ where h ∈ C0(R+), and tn ↓ 0 as n→∞. We want to

show that

‖M(f + tnhn)−M(f)

tn
−M′f (h)‖∞

= ‖M(f + tnhn)− f
tn

−M′f (h)‖∞ →∞ . (3.35)

By Lemma 2.2 in Durot and Tocquet (2003), we have

‖M(f + tnhn)−M(f)

tn
− M(f + tnh)−M(f)

tn
‖∞ ≤ ‖hn − h‖∞ → 0 . (3.36)

Thus, in verifying (3.35) it suffices to show that

‖M(f + tnh)− f
tn

−M′f (h)‖∞ →∞ . (3.37)
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For notational simplicity, define gn, g : R+ → R by

gn(x) ≡ M(f + tnh)(x)− f(x)

tn
, g(x) ≡M′f (h)(x) , ∀x ∈ R+ .

In order to show (3.37) or gn → g uniformly, we show gn → g pointwise, compactify R+

to embed everything into `∞(R̄+), and then conclude uniformity under suitable continuity

and monotonicity by Dini’s theorem.

Step 1: For each x ∈ R+, gn(x) ↓ g(x) as n → ∞. The proof here closely follows that

of Lemma 3.2 in Beare and Moon (2015). Fix x ∈ (0,∞). Since f is concave on [0,∞),

we have by Theorem 7.23 in Aliprantis and Border (2006) that there is an affine function

ξ : R+ → R such that f(x) = ξ(x) and ξ ≥ f on R+. For any f1, f2 with f2 affine, it is an

easy consequence of Lemma 2.1 in Durot and Tocquet (2003) thatM(f1+f2) =M(f1)+f2.

Thus, together with the fact thatM is positively homogeneous of degree one, we may rewrite

gn(x) = t−1
n {M(f + tnh− ξ)(x)} =M(h+ t−1

n {f − ξ})(x) . (3.38)

Since ξ ≥ f and tn ↓ 0, it is clear from representation (3.38) that gn(x) is decreasing in n.

Next, we will show that for hf,n ≡ h+ t−1
n {f − ξ} and any fixed δ > 0,

gn(x) =MIx(hf,n)(x) ≡MTx(δ)(h+ t−1
n {f − ξ})(x) , (3.39)

where Tx(δ) ≡ [(ax − δ) ∨ 0, bx + δ] for all n sufficiently large. By Lemma 1 in Carolan

(2002), we may rewrite (3.38) as

gn(x) = sup
0≤u≤x

sup
x≤v≤∞

(v − x)hf,n(u) + (x− u)hf,n(v)

v − u
, (3.40)

where 0/0 is defined as hf,n(x) = h(x) if u = v = x. For u 6= v, substituting hf,n ≡
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h+ t−1
n {f − ξ} back into the objective function in (3.40) yields that

(v − x)hf,n(u) + (x− u)hf,n(v)

v − u

=
(v − x)h(u) + (x− u)h(v)

v − u
+ t−1

n

[
(v − x)f(u) + (x− u)f(v)

v − u
− f(x)

]
, (3.41)

where we used the fact that ξ is affine with ξ(x) = f(x). By concavity of f and definitions

of ax and bx, the term in the brackets of (3.41) is negative and bounded away from zero as

u and v with u 6= v range over the complement of [(ax − δ) ∨ 0, x] ∪ [x, (bx + δ)]. Thus, by

choosing n sufficiently large, we may restrict the suprema in (3.40) to u ∈ [(ax − δ) ∨ 0, x]

and v ∈ [x, (bx + δ)]:

gn(x) = sup
u∈[(ax−δ)∨0,x]

sup
v∈[x,(bx+δ)]

(v − x)hf,n(u) + (x− u)hf,n(v)

v − u
=MTx(δ)hf,n(x) , (3.42)

proving (3.39), where the second equality is again by Lemma 1 in Carolan (2002).

In what follows, define M[ax,bx]h(x) = h(x) if ax = bx = x. Now by (3.39) we have

lim sup
n→∞

|gn(x)− g(x)| ≤ lim sup
n→∞

|M[(ax−δ)∨0,bx+δ]hf,n(x)−M[ax,bx]h(x)| . (3.43)

Since hf,n(x′) ≤ h(x′) for all x′ ∈ (0,∞) with equality if ax ≤ x′ ≤ bx, it follows that

M[ax,bx]h(x) ≤M[(ax−δ)∨0,bx+δ]hf,n(x) ≤M[(ax−δ)∨0,bx+δ]h(x) . (3.44)

Combining (3.43) and (3.44) we may conclude that

lim sup
n→∞

|gn(x)− g(x)| ≤ lim sup
n→∞

|M[(ax−δ)∨0,bx+δ]h(x)−M[ax,bx]h(x)| . (3.45)

It follows that gn(x) ↓ g(x) as n → ∞ for x ∈ (0,∞) by letting δ ↓ 0 in (3.45). For x = 0,

it is clear that gn(0) = 0 since h(0) = 0, in which case we trivially have gn(0) ↓ g(0) = 0 as

n→∞.

Step 2: Embedding into `∞(R̄+). Let R̄+ ≡ [0,∞] be the one point compactification of



www.manaraa.com

157

R+. Since h ∈ C0(R+), we also have h ∈ C0(R̄+) by setting h(∞) = 0. Moreover, we may

set hn(∞) = 0 so that hn(∞)→ h(∞) as n→∞. In this way, we still have ‖hn−h‖∞ → 0

in `∞(R̄+). Finally, we may also identify f ∈ `∞(R̄+) by setting f(∞) = supx∈R+ f(x).6

To distinguish, we denote the uniform norm in `∞(R̄+) by ‖ · ‖∞,R̄+ .

Step 3: Conclude by invoking Dini’s theorem. To verify (3.37), we now aim for the following

stronger result:

‖gn − g‖∞,R̄+ = ‖M(f + tnh)− f
tn

−M′f (h)‖∞,R̄+ →∞ , (3.46)

where we set M′f (h)(∞) = h(∞) = 0. Since gn(∞) = g(∞) = 0, together with results in

Step 1, this implies that gn ↓ g pointwise on R̄+.

Notice that gn is continuous on R̄+ for each n ∈ N. To see this, note that gn is

automatically continuous as a concave function on [0,∞) by right continuity of f at 0; also

as x→∞, we have by h ∈ C0(R+) and Lemma 2.2 in Durot and Tocquet (2003),

|gn(x)| ≡ |M(f + tnh)(x)− f(x)

tn
| ≤ sup

t∈[x,∞)
|h(t)| → 0 = gn(∞) .

Second, g is continuous on R̄+ as well by definition. It follows by Dini’s theorem (Aliprantis

and Border, 2006, Theorem 2.66) that gn → g uniformly on R̄+, proving (3.46) and we are

done.

Proof of Theorem 3.2.1: By F being concave, we may rewrite
√
n{F̂n−F} =

√
n{MFn−

MF}, which together with Assumption 3.2.2, Proposition 3.2.1, and G being tight with

P (G ∈ C0(R+)) = 1, allows us to invoke Theorem 2.1 in Fang and Santos (2014) to con-

clude.

Proof of Theorem 3.2.2: We proceed by verifying conditions of Theorem 3.3 in Fang

and Santos (2014). First, we show that our proposed estimator M̂′n : `∞(R+) → `∞(R+)

meets Assumption 3.3 in Fang and Santos (2014). Note that M̂′n is Lipschitz continuous

6A function f : R̄+ → R is said to be concave if f(tx + (1 − t)y) ≥ tf(x) + (1 − t)f(y) for all t ∈ (0, 1)
and all x, y ∈ R̄+.
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surely for if h1, h2 ∈ `∞(R+), then by Lemma 2.2 in Durot and Tocquet (2003),

‖M̂′n(h1)− M̂′n(h2)‖∞ = ‖M(Fn + tnh1)−M(Fn)

tn
− M(Fn + tnh2)−M(Fn)

tn
‖∞

= ‖M(Fn + tnh1)−M(Fn + tnh2)

tn
‖∞ ≤ ‖h1 − h2‖∞ .

Next, fix h ∈ C0(R+) and we want to show the pointwise consistency of M̂′n. Since C0(R+)

is closed in `∞(R+), M′F can be extended continuously to the entire space `∞(R+) by

Theorem 4.1 in Dugundji (1951). Now rewrite

M̂′n(h) =
M(Fn + tnh1)−M(Fn)

tn

=
M(F + tnhn)−MF

tn
− (
√
ntn)−1 ·

√
n{M(Fn)−MF} , (3.47)

where hn ≡ (
√
ntn)−1√n{Fn−F}+h. By Assumption 3.2.2,

√
n{Fn−F}

L−→ G in `∞(R+)

where G is tight and hence separable. Also,
√
ntn →∞ as n→∞ by assumption. It follows

by Example 1.4.7 and Lemma 1.10.2 in van der Vaart and Wellner (1996) that hn
p−→ h.

Now by Proposition 3.2.1 and the extended continuous mapping theorem,

M(F + tnhn)−MF

tn

p−→M′F (h) . (3.48)

Theorem 3.2.1 and
√
ntn → ∞ as n → ∞ together imply again by Example 1.4.7 and

Lemma 1.10.2 in van der Vaart and Wellner (1996) that

(
√
ntn)−1 ·

√
n{M(Fn)−MF} p−→ 0 . (3.49)

Combination of results (3.47), (3.48) and (3.49) then leads to M̂′n(h)
p−→M′F (h) as n→∞.

We may now conclude by Lemma A.6 in Fang and Santos (2014) that Assumption 3.3 in

Fang and Santos (2014) holds with θ, φ, D, D0 and E replaced by F , M, `∞(R+), C0(R+)

and `∞(R+) respectively. The conclusion follows by Theorem 3.3 in Fang and Santos (2014).

Proof of Corollary 3.2.1: Note that M′F (G) is tight since G is tight and M′F is
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continuous as a Hadamard directional derivative (Shapiro, 1990, Propositioin 3.1). By

Proposition 10.7 in Kosorok (2008), Theorem 3.2.2 and ‖ · ‖∞ being Lipschitz continuous,

we conclude that

sup
h∈BL1(R)

|EW [h(‖M̂′n(
√
n{F∗n − Fn})‖∞)]− E[h(‖M′F (G)‖∞)]| = op(1) . (3.50)

Part (i) then follows from the same proof as that of Corollary 3.2 in Fang and Santos (2014)

by noticing that the distribution function of ‖M′F (G)‖∞ is strictly increasing at the 1− α

quantile with α ∈ (0, 1) in view of Lemma 3.4.1.

As for part (ii), Theorem 3.2.1 implies by the continuous mapping theorem that

‖
√
n{F̂n − F}‖∞

L−→ ‖M′F (G)‖∞ . (3.51)

Then the portmanteau theorem, part (i) and c1−α being a continuity point imply that

lim inf
n→∞

P (F (t) ∈ F̂n(t)± ĉ1−α√
n

for all t ∈ [0,∞))

= lim inf
n→∞

P (‖
√
n{F̂n − F}‖∞ ≤ ĉ1−α)

= P (‖M′F (G)‖∞ ≤ c1−α) = 1− α . (3.52)

We thus proved part (ii).

Lemma 3.4.1. The distribution function of ‖M′F (G)‖∞ for all concave F is absolutely

continuous and strictly increasing on its support.

Proof: First of all, notice that M′F is convex on C0(R+). To see this, note that M is

convex for if a ∈ (0, 1) and f, g ∈ `∞(R+), then aM(f) + (1− a)M(g) is clearly a concave

majorant of af + (1− a)g and hence

M(af + (1− a)g) ≤ aM(f) + (1− a)M(g) .

Now let a ∈ (0, 1) and f, g ∈ C0(R+). Take {fn, gn} ⊂ `∞(R+) such that fn → f and
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gn → g. Then

M′F (af + (1− a)g) = lim
n→∞

M(F + tn(afn + (1− a)gn))− F
tn

≤ lim
n→∞

aM(F + tnfn) + (1− a)M(F + tngn)− F
tn

= a · lim
n→∞

M(F + tnfn)− F
tn

+ (1− a) · lim
n→∞

M(F + tngn))− F
tn

= aM′F (f) + (1− a)M′F (g) . (3.53)

Next, let S∗ be the unit circle of the topological dual space `∞(R+)∗ of `∞(R+) – i.e.

S∗ ≡ {g ∈ `∞(R+)∗ : ‖g‖op = 1} where ‖ · ‖op is the corresponding operator norm. Then by

Lemma 6.10 in Aliprantis and Border (2006) we may write

‖M′F (G)‖∞ = sup
g∈S∗
|g(M′F (G))| = sup

g∈S∗
g(M′F (G)) .

Define T : C0(R+)→ R by

T (f) ≡ sup
g∈S∗

g(M′F (f)) , (3.54)

so that ‖M′F (G)‖∞ = T (G). Inspecting (3.53) and (3.54) we see that T is convex. Second,

T is obviously continuous. Third, G is separable by Lemma 1.3.2 in van der Vaart and

Wellner (1996)and G being tight, which in turn implies by Theorem 7.1.7 in Bogachev

(2007) that G is Radon. Putting all these pieces together we are then able to conclude by

Theorem 11.1 in Davydov et al. (1998) that the distribution function H of ‖M′F (G)‖∞ is

absolutely continuous and has a positive and continuous derivative on the support of H

except on an at most countable set, which in turn implies that H is strictly increasing on

the support.
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Kulikov, V. N. and Lopuhaä, H. P. (2008). Distribution of global measures of devi-
ation between the empirical distribution function and its concave majorant. Journal of
Theoretical Probability, 21 356–377.

Le Cam, L. M. (1953). On some asymptotic properties of maximum likelihood estimates
and related Bayes estimates. In University of California Publications in Statistics, vol. 1.
277–330.

Le Cam, L. M. (1955). An extension of Wald’s theory of statistical decision functions.
The Annals of Mathematical Statistics, 26 69–81.

Le Cam, L. M. (1964). Sufficiency and approximate sufficiency. The Annals of Mathemat-
ical Statistics, 35 1419–1455.



www.manaraa.com

167

Le Cam, L. M. (1972). Limits of experiments. In Proc. Sixth Berkeley Symp. Math. Statist.
Probab, vol. 1. University of California Press, 245–261.

Le Cam, L. M. (1986). Asymptotic Methods in Statistical Decision Theory. Springer-
Verlag.

Ledoux, M. and Talagrand, M. (1991). Probability in Banach Spaces. Springer.

Lee, Y. (2009). Efficiency bounds for semiparametric estimation of quantile regression
under misspecification. Working paper.

Lehmann, E. L. and Casella, G. (1998). Theory of Point Estimation. 2nd ed. Springer.

Lehmann, E. L. and Romano, J. P. (2005). Testing Statistical Hypotheses. 3rd ed.
Springer Verlag.

Levit, B. (1978). Infinite-dimensional informational bounds. Theory of Probability and Its
Applications, 23 371–377.

Linton, O., Song, K. E. and Whang, Y.-J. (2010). An improved bootstrap test of
stochastic dominance. Journal of Econometrics, 154 186 – 202.

Manski, C. F. (2003). Partial Identification of Probability Distributions. Springer.

Manski, C. F. and Pepper, J. V. (2000). Monotone instrumental variables: With an
application to the returns to schooling. Econometrica, 68 997–1010.

Manski, C. F. and Pepper, J. V. (2009). More on monotone instrumental variables.
Econometrics Journal, 12 S200–S216.

Manski, C. F. and Tamer, E. (2002). Inference on regressions with interval data on a
regressor or outcome. Econometrica, 70 519–546.

Millar, P. W. (1983). The minimax principle in asymptotic statistical theory. vol. 976
of Lecture Notes in Mathematics. Springer Berlin Heidelberg, 75–265.

Millar, P. W. (1985). Non-parametric applications of an infinite dimensional convolution
theorem. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 68 545–556.

Muralidharan, K. and Sundararaman, V. (2011). Teacher performance pay: Experi-
mental evidence from India. Journal of Political Economy, 119 39–77.

Murphy, S. A. (2003). Optimal dynamic treatment regimes. Journal of the Royal Statis-
tical Society: Series B (Statistical Methodology), 65 331–355.

Newey, W. K. (1993). Efficient estimation of models with conditional moment restric-
tions. In Econometrics (H. G.S.Maddala, C.R.Rao, ed.), vol. 11 of Handbook of Statistics,
chap. 16. Amsterdam: North-Holland, 419 – 454.

Newey, W. K. and Powell, J. L. (2003). Instrumental variable estimation of nonpara-
metric models. Econometrica, 71 1565–1578.



www.manaraa.com

168

Oosterhoff, J. and van Zwet, W. (1979). A note on contiguity and Hellinger distance.
In Contributions to Statistics: Jaroslav Hájek Memorial Volume (J. Jurecková, ed.).
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